A12 and B12 Reference Manual

A12 Board

A12 Sensor

Thales Navigation, Inc. Corporate Headquarters, Santa Clara, CA, USA +1 408-615-5100 Fax +1 408-615-5200 Email professionalsales@thalesnavigation.com

In Washington, DC +1 703 476 2212 Fax +1 703 476 2214

In South America +56 2 234 56 43 Fax +56 2 234 56 47

In China +86 10 6566 9866 Fax +86 10 6566 0246

European Headquarters, Carquefou, France +33 2 28 09 38 00 Fax +33 2 28 09 39 39 Email info@thalesnavigation.com

In Germany +49 81 6564 7930 Fax +49 81 6564 7950

B12 Board

B12 Sensor

In Russia +7 095 956 5400 Fax +7 095 956 5360

In UK +44 1993 8867 66 Fax +44 1993 8867 67

In the Netherlands +31 78 61 57 988 Fax +31 78 61 52 027

Website www.thalesnavigation.com

Copyright Notice

Copyright © 2002 Thales Navigation. All rights reserved.

No part of this publication or the computer programs described in it may be reproduced, translated, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical photocopying, recording, or otherwise, without prior written permission of Thales Navigation. Your rights with regard to this publication and the computer programs are subject to the restrictions and limitations imposed by the copyright laws of the United States of America ("U.S.A.") and/or the jurisdiction in which you are located. For information on translations and distribution outside the U.S.A. please contact Thales Navigation.

Printed in the United States of America. Part Number: 630871, Revision B January 2003

Trademark Notice

Ashtech is a registered trademark of Thales Navigation. A12[™], B12[™], Evaluate, and the Ashtech logo are trademarks of Thales Navigation. All other product and brand names are trademarks or registered trademarks of their respective holders.

Acronyms Used In This Manual

2-D	Two-dimensional	RTCM	Radio Technical Commission for Maritime
3-D	Three-dimensional		Services
ACK	Acknowledge	S	South
ASCII	American Standard Code for Information	S/A	Selective Availability
	Interchange	SBAS	Satellite-Based Augmentation System
BIT	Built-in Test	SMA	Type of connector
C/A	Coarse/Acquisition	SMB	Type of connector
CEP	Circular Error of Probability	SMT	Type of connector
CMOS	Complementary Metal-Oxide Semiconductor	SNR	Signal-to-Noise Ratio
COG	Course Over Ground	SOG	Speed Over Ground
DB-9	Type of connector	SPS	Standard Positioning Service
DGPS	Differential GPS	SV	Space Vehicle (Satellite)
E	East	TDOP	Time Dilution of Precision
EGNOS	European Geostationary Navigation	TTFF	Time To First Fix
	Overlay System	TTL	Transistor-Transistor Logic
ESD	Electrostatic Discharge	UTC	Universal Time Coordinated
GPS	Global Positioning System	VDC	Volts Direct Current
HDOP	Horizontal Dilution of Precision	VDOP	Vertical Dilution of Precision
I/O	Input/Output	W	West
ID	Identification	WAAS	Wide Area Augmentation System
L/C	Inductance/Capacitance	WGS	World Geodetic System
LNA	Low-Noise Amplifier		
Μ	Meter		
MSAS	Japanese Multi-function Transport System		
MTCR	Missile Technology Control Regime		
N	North		
NAK	Not acknowledged		
NMEA	National Marine Electronics Association		
OEM	Original Equipment Manufacturer		
P/N	Part Number		
PC	Personal Computer		
PDOP	Position Dilution of Precision		
PPS	Pulse Per Second		
PRN	Pseudo-random Number		
RF	Radio Frequency		
RHCP	Right-Hand Circular Polarization		

THALES NAVIGATION PROFESSIONAL PRODUCTS - LIMITED WARRANTY

Thales Navigation warrants their GPS receivers and hardware accessories to be free of defects in material and workmanship and will conform to our published specifications for the product for a period of one year from the date of original purchase. THIS WARRANTY APPLIES ONLY TO THE ORIGINAL PURCHASER OF THIS PRODUCT.

In the event of a defect, Thales Navigation will, at its option, repair or replace the hardware product with no charge to the purchaser for parts or labor. The repaired or replaced product will be warranted for 90 days from the date of return shipment, or for the balance of the original warranty, whichever is longer. Thales Navigation warrants that software products or software included in hardware products will be free from defects in the media for a period of 30 days from the date of shipment and will substantially conform to the then-current user documentation provided with the software (including updates thereto). Thales Navigation's sole obligation shall be the correction or replacement of the media or the software so that it will substantially conform to the then- current user documentation. Thales Navigation does not warrant the software will meet purchaser's requirements or that its operation will be uninterrupted, error-free or virus-free. Purchaser assumes the entire risk of using the software.

PURCHASER'S EXCLUSIVE REMEDY UNDER THIS WRITTEN WARRANTY OR ANY IMPLIED WARRANTY SHALL BE LIMITED TO THE REPAIR OR REPLACEMENT, AT THALES NAVIGATION'S OPTION, OF ANY DEFECTIVE PART OF THE RECEIVER OR ACCESSORIES WHICH ARE COVERED BY THIS WARRANTY. REPAIRS UNDER THIS WARRANTY SHALL ONLY BE MADE AT AN AUTHORIZED THALES NAVIGATION SERVICE CENTER. ANY REPAIRS BY A SERVICE CENTER NOT AUTHORIZED BY THALES NAVIGATION WILL VOID THIS WARRANTY.

To obtain warranty service the purchaser must obtain a Return Materials Authorization (RMA) number prior to shipping by calling 800-229-2400 (U.S.) or 408 615 3981 (International), or by sending a repair request on-line at <u>http://products.thalesnavigation.com/en/support/rma.asp</u>. The purchaser must return the product postpaid with a copy of the original sales receipt to the address provided by Thales Navigation with the RMA number. Purchaser's return address and the RMA number must be clearly printed on the outside of the package.

Thales Navigation reserves the right to refuse to provide service free-of-charge if the sales receipt is not provided or if the information contained in it is incomplete or illegible or if the serial number is altered or removed. Thales Navigation will not be responsible for any losses or damage to the product incurred while the product is in transit or is being shipped for repair. Insurance is recommended. Thales Navigation suggests using a trackable shipping method such as UPS or FedEx when returning a product for service.

EXCEPT AS SET FORTH IN THIS LIMITED WARRANTY, ALL OTHER EXPRESSED OR IMPLIED WARRANTIES, INCLUDING THOSE OF FITNESS FOR ANY PARTICULAR PUR-POSE, MERCHANTABILITY OR NON-INFRINGEMENT, ARE HEREBY DISCLAIMED AND IF APPLICABLE, IMPLIED WARRANTIES UNDER ARTICLE 35 OF THE UNITED NATIONS CON-VENTION ON CONTRACTS FOR THE INTERNATIONAL SALE OF GOODS. Some national, state, or local laws do not allow limitations on implied warranty or how long an implied warranty lasts, so the above limitation may not apply to you.

The following are excluded from the warranty coverage: (1) periodic maintenance and repair or replacement of parts due to normal wear and tear; (2) batteries and finishes; (3) installations or defects resulting from installation; (4) any damage caused by (i) shipping, misuse, abuse, negligence, tampering, or improper use; (ii) disasters such as fire, flood, wind, and lightning; (iii) unauthorized attachments or modification; (5) service performed or attempted by anyone other than an authorized Thales Navigations Service Center; (6) any product, components or parts not manufactured by Thales Navigation; (7) that the receiver will be free from any claim for infringement of any patent, trademark, copyright or other proprietary right, including trade secrets; and (8) any damage due to accident, resulting from inaccurate satellite transmissions. Inaccurate transmissions can occur due to changes in the position, health or geometry of a satellite or modifications to the receiver that may be required due to any change in the GPS. (**Note**: Thales Navigation GPS receivers use GPS or GPS+GLONASS to obtain position, velocity and time information. GPS is operated by the U.S. Government and GLONASS is the Global Navigation Satellite System of the Russian Federation, which are solely responsible for the accuracy and maintenance of their systems. Certain conditions can cause inaccuracies which could require modifications to the receiver. Examples of such conditions include but are not limited to changes in the GPS or GLO-NASS transmission.) **Opening, dismantling or repairing of this product by anyone other than an authorized Thales Navigation Service Center will void this warranty.**

THALES NAVIGATION SHALL NOT BE LIABLE TO PURCHASER OR ANY OTHER PERSON FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DAMAGES RESULTING FROM DELAY OR LOSS OF USE, LOSS OF OR DAMAGES ARISING OUT OF BREACH OF THIS WARRANTY OR ANY IMPLIED WARRANTY EVEN THOUGH CAUSED BY NEGLIGENCE OR OTHER FAULT OFTHALES NAV-IGATION OR NEGLIGENT USAGE OF THE PRODUCT. IN NO EVENT WILL THALES NAVIGA-TION BE RESPONSIBLE FOR SUCH DAMAGES, EVEN IF THALES NAVIGATION HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This written warranty is the complete, final and exclusive agreement between Thales Navigation and the purchaser with respect to the quality of performance of the goods and any and all warranties and representations. This warranty sets forth all of Thales Navigation's responsibilities regarding this product. This limited warranty is governed by the laws of the State of California, without reference to its conflict of law provisions or the U.N. Convention on Contracts for the International Sale of Goods, and shall benefit Thales Navigation, its successors and assigns.

This warranty gives the purchaser specific rights. The purchaser may have other rights which vary from locality to locality (including Directive 1999/44/EC in the EC Member States) and certain limitations contained in this warranty, including the exclusion or limitation of incidental or consequential damages may not apply.

For further information concerning this limited warranty, please call or write:

Thales Navigation, Inc., 471 El Camino Real, Santa Clara, California 95050 Phone: +1 408-615-5100, Fax: +1 408-615-5200 or

Thales Navigation SA – ZAC La Fleuriaye – BP 433 – 44474 Carquefou Cedex – France Phone: +33 (0)2 28 09 38 00, Fax: +33 (0)2 28 09 39 39

Contents

Chapter 1 General Information	1
Overview	1
Functional Description	1
Technical Specifications	2
Performance Specifications	3
Hardware Description	4
Physical Configuration	4
Power/Input/Output Connections	6
Interfaces to External Equipment	7
Power Requirements	7
Environmental Limitations	7
Antenna	8
Radio Interference	
Chapter 2 Cotting Started	11
	••••••••••••••••••••••••••••••••••••••
Connection Dreadures	
Board	
Serial Data Communication	11 1/1
Communication Port Setun	14 1/1
RTS/CTS Considerations	
Data Output	10
Initial Operating Instructions	10
Chapter 3 Operation	17
System Setup	17
Message Format	17
Input Messages	17
Output Messages	18
Serial Port Configuration	18
Antenna Connection	19
Satellite Search Algorithm	19
Parameter Settings and Status	20
Saving New Parameter Settings	22
Position Modes	22
Altitude Hold Definition	22
Antenna Position Setting	22

NMEA Outputs	
Differential Operation	23
General	
SBAS Operation	24
Sources of Error	
RTCM Messages	
RTCM 104 Format, Version 2.2	
Pulse Generation (1 PPS)	25
Magnetic Variation and Geoid Models	26
Chapter 4 A12 Development Kit	29
	29
Mounting the A12 Sensor	20
Configuring Your Kit for Operation	32
Step 1 - Inventory Your Equipment	
Step 2 - Load the Evaluate software into your computer	
Step 3 - Prepare Your Equipment for Operation	
Power and Signal Connections	36
Step 4 - Position the GPS Antenna	
Step 5 - Power On the Equipment	
Step 6 - Using Evaluate Software	40
Chapter 5 B12 Board and Sensor	11
	 1
B12 Board	41
Physical Configuration	
Interface Connector and Power Requirements	41
Serial Interface and Signal Levels	42
Environmental Specifications and Dimensions	43
Dimensions and mounting Configuration	43
B12 Sensor	
Specifications	45
Chapter & Command/Response Formats	47
	- 1
Receiver Commands and Responses	 <u>4</u> 0
Set Commands	
Query Commands	
Al M ⁻ Upload Almanac Data	
, Em opieda , anando Data	

AL	T: Set Ellipsoidal Height of Antenna	53
DT	M: Select Datum to Use	53
FI>	X: Altitude Position Fix Mode	54
HD	DP: Set HDOP Mask	54
INI	I: Receiver Initialization	55
LT.	Z: Set Local Timezone	56
PA	R: Receiver Parameter Query	56
PE	M: Set Position Elevation Mask Angle	58
PD	P: Set PDOP Mask for Position Computation	58
PM	ID: Set Navigation Position Mode	59
PC	DS: Set Antenna Position	59
PP	PO: Point Positioning	60
PR	RT: Serial Port Baud Rate Query	61
RI	D: Receiver ID Query	62
\$	SPASHR,RID	62
RS	ST: Reset Receiver	62
SA	V: Save User Parameters	63
SP	PD: Set Serial Port Speed	63
UD	DD: Set User-Defined Datum Parameters	64
UI	D: Unit Identification	65
US	SE: Set Satellites to Use	66
WA	AS: Wide-Area Augmentation	66
ZD	0A: Upload Initial Real-time Clock Value	66
NME	EA Data Message Commands & Responses	68
Se	t Commands	68
C	Query Commands	69
AL	L: Disable All NMEA Messages	71
\$	\$PASHS,NME,ALL	71
AL	M: Almanac Message	71
\$	\$PASHS,NME,ALM	71
\$	\$PASHQ,ALM	71
\$	GPALM	71
GG	GA: GPS Position Message	74
\$	PASHS,NME,GGA	74
\$	SPASHQ,GGA,x	74
\$	GPGGA	74
GL	L: Latitude/Longitude Message	77
\$	PASHS,NME,GLL	77
\$	PASHQ,GLL	77

\$GPGLL	
GSA: DOP and Active Satellite Messages	79
\$PASHS,NME,GSA	
\$PASHQ,GSA	79
\$GPGSA	
GSV: Satellites in View Message	80
\$PASHS,NME,GSV	80
\$PASHQ,GSV	81
\$GPGSV	81
PER: Set NMEA Send Interval	
\$PASHS,NME,PER,d	82
POS: Position Message	
\$PASHS,NME,POS	83
\$PASHQ,POS	83
\$PASHR,POS	83
RMC: Recommended Minimum Course	
SAT: Satellite Status Query	
VTG: Velocity/Course Message	91
ZDA: Time and Date	93
RTCM Commands and Responses	95
Set Commands	95
Query Commands	95
RTC: RTCM Status Query	96
AUT: Set Auto Differential Mode	97
MAX: Set RTCM Differential Data Age	97
OFF: Disable RTCM	97
REM: Enable Remote RTCM	
Chanter 7 Reference	۵۵
Soarch Stratogy & Desition Algorithms	
Satellite Selection	
False Desition Condition	
Search Strategy	100
Desition Modes	100
3D Mode	100
2D Mode	100
Missile Technology Control Regime (MTCP)	
Other Operational Characteristics	101
Conversions	101
0011761310113	

Self Test	101
Watchdog Timer	101
System Parameter Settings	101
Long-Term Operation	102
Datum Support	102
Detailed Performance Characteristics	102
Accuracy	102
TTFF (Time To First Fix)	103
Reacquisition Times	104
	405
Chapter 8 Troubleshooting	105
TTL-to-RS-232 Conversion	105
Port Setup	105
RTS/CTS	105
Factory Defaults	105
Saving Parameters	105
Logging Data	105
Using Third Party Software	106
Appendix A Global Product Support	107
Solutions for Common Problems	108
Corporate Web Page	108
Repair Centers	108
Glossary	109
INDEX	121

List of Figures

. 2
. 4
. 5
. 9
12
26
26
29
31
34
36
40
41
44
45

List of Tables

Table 1.1	Technical Specifications	2
Table 1.2	Performance Specifications	3
Table 1.3	Dimensions	6
Table 1.4	Power/Input/Output Connections	6
Table 1.5	Environmental Limitations	7
Table 1.6	Antenna Specifications	8
Table 2.1	Power/Input/Output Parameters	. 13
Table 2.2	TTL I/O Interface Levels	. 14
Table 2.3	Default A12 Communication Parameters	. 15
Table 3.1	Default Parameters	. 21
Table 3.2	NMEA and Miscellaneous Output Messages	. 23
Table 3.3	RTCM Format	. 25
Table 4.1	A12 Sensor Dimensions	. 32
Table 4.2	Evaluation and Development Kit Inventory	. 33
Table 4.3	Power/Input/Output Connections	. 36
Table 4.4	Tracking LED Operation	. 39
Table 5.1	Connector Pinout	. 42
Table 5.2	Power Requirements	. 43
Table 5.3	Environmental Limitations	. 44
Table 5.4	B12 Sensor Specifications	. 45
Table 5.5	Power/Input/Output Connections	. 46
Table 6.1	Command Parameter Symbols	. 48
Table 6.2	Summary of General Receiver Set/Query Commands	51
Table 6.3	ALM Parameters	. 52
Table 6.4	ALT Parameters	53
Table 6.5	DTM Parameters	. 54
Table 6.6	FIX Parameters	. 54
Table 6.7	HDOP Parameters	55
Table 6.8	INI Parameters	55
Table 6.9	LTZ Parameters	. 56
Table 6.10	PAR Parameters	. 57
Table 6.11	PDP Parameters	. 58
Table 6.12	PMD Parameters	. 59
Table 6.13	POS Parameters	. 60
Table 6.14	PRT Parameters	. 61
Table 6.15	\$PASHR,RID Structure	62
Table 6.16	SPD Parameters	63
Table 6.17	UDD Structure	. 64
Table 6.18	ZDA Parameters	. 67

Table 6.19	NMEA Data Message Commands and Responses	70
Table 6.20	GPALM Response Message Structure	
Table 6.21	Typical GPALM Response Message	73
Table 6.22	GGA Message Structure	75
Table 6.23	Typical GGA Message	
Table 6.24	GLL Message Structure	
Table 6.25	Typical GLL Response Message	
Table 6.26	GSA Message Structure	
Table 6.27	Typical GSA Message	80
Table 6.28	GSV Message Structure	81
Table 6.29	Typical GSV Message	82
Table 6.30	POS Message Structure	83
Table 6.31	Typical POS Message	85
Table 6.32	GPRMC Parameters	87
Table 6.33	Typical RMC Response Message	88
Table 6.34	SAT Message Structure	89
Table 6.35	Typical SAT Message	
Table 6.36	VTG Message Structure	92
Table 6.37	Typical VTG Message	93
Table 6.38	GPZDA Time and Date Message Structure	
Table 6.39	Typical GPZDA Response Message	
Table 6.40	RTCM Commands	95
Table 6.41	RTC Parameters	
Table 7.1:	Accuracy Specifications (Low multipath environment)	102
Table 7.2:	TTFF and Reacquisition Performance	103
Table 7.3:	Reacquisition Times	104

General Information

Overview

This chapter presents a functional and hardware description of the A12 GPS OEM board, defines the RF interface and the power/input/output signal parameters, and lists power requirements and environmental specifications.

An A12 Evaluation and Development Kit, available separately, lets you rapidly set up and operate the A12 to determine suitability for your application. The kit offers:

- An A12 GPS OEM board enclosed in a housing with RS-232 interfaces,
- Easy-to-use connectors,
- A power switch.

The kit can also be used for software development (experimenting with commands, etc.) and for troubleshooting once the system is deployed. If you have purchased an A12 Evaluation and Development Kit and want to begin working with your kit immediately, go directly to Chapter 4 for initial setup instructions.

For the information of customers who have previously purchased or used a Thales Navigation G8, the A12 has addditional capability and is backward-compatible with the G8 except for a different RF connector.

Functional Description

The A12 OEM board, Figure 1.1, fulfills the need for a low-cost, high-performance GPS sensor, particularly where the requirements are for reliable positioning reporting in difficult environments such as vehicle navigation, fleet management, and personal asset management (tracking of cars, boats, people, etc.). The A12 is designed for system integration, offering autonomous or DGPS positioning, low power, small size, and the standard NMEA protocol. The A12 utilizes any voltage between 3.3 and 5 VDC, and supports two TTL-compatible serial communication ports that are accessible through the I/O connector.

The A12 OEM board processes signals from the Global Positioning System (GPS) satellite constellation and Satellite-Based Augmentation System (SBAS) satellites to provide real-time position, velocity, and time measurements. The A12 uses ten separate and parallel channels for Coarse/Acquisition (C/A) code-phase (a.k.a. pseudo-range) on the L1 (1575.42 MHz) band, and two channels to receive signals from the SBAS satellites. The A12 can also be configured to track GPS satellites on all 12 channels. The A12 receives satellite signals via an L-band

antenna with integral low-noise amplifier (an active antenna must be supplied separately). The A12 board is capable of using a passive antenna provided the RF cable length is less than 6 inches. The A12 outputs position, speed, and time information, either autonomously or differentially corrected using DGPS corrections in RTCM SC-104 Version 2.2 format or using corrections from SBAS signals.

Figure 1.1: A12 OEM Board

Technical Specifications

Table 1.1 lists the more important technical specifications.

Table 1.1	Technical	Specifications
-----------	-----------	----------------

ltem	Specification
General	12-channel continuous tracking OEM GPS receiver board
GPS parameters	L1 frequency, C/A code (SPS)
Update rate	1 Hz
Communication interface	NMEA 0183 V3.0 using standard Ashtech command set
Message types	RTCM V2.2 differential remote message types 1, 3, 9
Serial ports	One TTL full duplex for primary I/O One TTL half duplex for RTCM
Baud rate	Software selectable 1200 bps to 115,200 bps. Maximum recommended character rate is 400 characters per second.

Item	Specification
Size	Bare board: $1.54 \times 2.36 \times 0.41$ inches (39 x 60 x 10 mm) With mechanical shield case: $1.58 \times 2.41 \times 0.52$ in (40 x 61 x 13 mm)
Weight	Board: 0.7 oz. (20 gr) With mechanical shield case: 1.6 oz. (45.4 gr)
I/O interface	TTL compatible
Input voltage/ current consumption	3.3 to 5 VDC/55 to 70 mA typical
Backup power	2.7 to 3.6 VDC (6 µA)
Receiver noise figure	<7 dB typical without antenna

 Table 1.1 Technical Specifications (continued)

Performance Specifications

Table 1.2 summarizes the more important performance specifications. Additional details are presented in Table 7.1 on page 102.

Item		Specification	
Real-time position accuracy	Autonomous: SBAS: DGPS (local):	Horizontal CEP 3.0m 1.0m 0.8m	Horizontal 95% 5.0m 3.0m 1.5m
Typical acquisition time (Refer to note below)	<10 sec hot start <45 sec warm sta <150 sec cold sta	rt rt	
Typical reacquisition time	1 sec from total satellite blockage for less than 20 seconds 3-5 sec from total satellite blockage for less than 180 seconds		
Update rate	User-selectable fr ments synchroniz	om 1 second to 99 sec ed with GPS.	conds in 1-second incre-
1 PPS output	A12 calculates tin it has an initial po to GPS time \pm 1 n ing position outag	ne and outputs the first sition fix. 1 PPS pulse nsec. The A12 continu- es, but with reduced a	1 PPS pulse only after output is synchronized es to output 1 PPS dur- ccuracy.
Geoid model	Supported interna	lly	
Magnetic variation model	Supported interna	lly	

Table 1.2 Performance Specifications

If the A12 has a valid almanac and ephemeris, but has retained a last known position more than 1000 km from its actual location, the receiver should be reset using the \$PASHS,INI command to minimize start time. If not reset, this condition may cause a long delay in the start time of the receiver.

Hardware Description

Physical Configuration

The A12 is delivered with a mechanical shield case. This mechanical shield case provides protection while handling, a significant degree of ESD protection, and a small degree of EMI protection. We recommended you use the A12 with the mechanical shield case, but this is not absolutely necessary. When the board is used within the mechanical shield case, the most common mounting method utilizes the three mounting holes on the bottom of the mechanical shield case, as shown in Figure 1.2

Figure 1.2: Mechanical Shield Case Configuration

When used outside the mechanical shield case, the A12 board can be mounted using the mounting holes provided in each corner as shown in Figure 1.3. A separate RF shield is soldered to the board, located as shown in Figure 1.3. The RF shield must always remain on the board.

Figure 1.3: Bare Board Configuration

Charactoristic	Without Mechanical Shield Case		With Mechanical Shield Case	
Characteristic	Inches	Millimeters	Inches	Millimeters
Length	2.362	60.0	2.410	61.2
Width	1.535	39.0	1.575	40
Thickness	0.41	10.4	0.523	13.3
Weight	0.7 oz.	19.8 gr	1.6 oz.	45.4 gr
Mounting Method	One hole in each corner of board	One hole in each corner of board	Three holes on bottom of shield case	Three holes on bottom of shield case
Mounting hole diameter	Figure 1.3	Figure 1.3	Figure 1.2	Figure 1.2
Mounting hole location	Figure 1.3	Figure 1.3	Figure 1.2	Figure 1.2

Table 1.3 Dimensions

Power/Input/Output Connections

Table 1.4 lists the power/input/output connections for the Molex 8-pin I/O connector. Connector types are defined in Chapter 2.

Pin	Signal Designation	Function
1	VCC	Primary board power connection
2	V_ANT	Antenna power connection
3	V_BACK	Battery backup power connection
4	GND	Ground
5	RTCM	Receive Port B: Receive data at A12 from external device
6	RXD	Receive Port A: Receive data at A12 from external device
7	TXD	Transmit Port A: Transmit data from A12 to external device
8	1 PPS	1 PPS output

Table 1.4 Power/Input/Output Connections

Interfaces to External Equipment

All Thales Navigation GPS receivers use a combination of standard NMEA commands and Ashtech NMEA style commands ("PASH" commands).

The A12 returns responses in standard NMEA format or Ashtech NMEA style format, depending upon the command given the receiver. The standard NMEA responses are \$GPALM, \$GPGGA, \$GPGLL, \$GPGSA, \$GPGSV, \$GPRMC, \$GPVTG, and \$GPZDA per NMEA specification 0183 V3.0. In addition, Thales Navigation has implemented a set of NMEA style messages that are maintained for compatibility with the Thales Navigation OEM product line. These responses are prefixed with the string \$PASHR. All responses include a checksum.

NMEA responses and \$PASH commands and responses are described in detail in Chapter 5.

Power Requirements

The A12 requires the following operating power (typical):

Main power: 3.3 to 5.0 VDC

Nominal current: 55 to 70 mA

Nominal power: 230 mW @ 3.3 VDC

Backup power: 6 µA at 2.7 to 3.6 VDC

Antenna power (V_ANT): 5 VDC, 300 mA max (active antenna must be supplied separately)

Environmental Limitations

The A12 operates within the environmental limitations listed in Table 1.5.

Condition	Specification
Operating temperature	-30°C to +80°C
Storage temperature	-40°C to +85°C
Humidity	95% RH non-condensing @ +60°C

Table 1.5 Environmental Limitations

Condition	Specification		
Vibration	0.008 g ² /Hz 0.05 g ² /Hz 3 dB/octave	5 to 20 Hz 20 to 100 Hz 100 to 900 Hz	
Speed limitations	1000 knots (514 m/sec)*		
Altitude limitations	60,000 feet (18,288 m)*		
* The A12 produces no valid position information beyond these limits.			

Table 1.5 Environmental Limitations (continued)

Antenna

For optimum performance, the A12 requires a reliable, low-power antenna with a built-in low-noise amplifier (LNA). Many antenna manufacturers provide low-cost antennas optimized for a mobile environment, with many choices of design, filtering options, LNA gain level, packaging, connector style, cable length, and mounting options. Given the wide variety of choices in the marketplace, we recommend you obtain your antenna directly from the manufacturer. Table 1.6 lists the required antenna electrical performance specifications. Contact your local distributor for a list of recommended antenna sources.

Parameter	Specification
Center frequency	1575.42 MHz
Output impedance	50 ohms
Polarization:	RHCP
Gain	Recommended 1 to 2 dBic at zenith
LNA gain	LNA gain - cable loss >10dB
Filter	30 dB attenuation 100 MHz above or below center frequency
Noise figure	< 2.5 dB
Power input	Antenna is powered via V_ANT at pin 2. User supplies power for antenna. Voltage input should be limited to 5 VDC or less.

Table 1.6	Antenna	Specifications
-----------	---------	----------------

The A12 contains an antenna supply circuit that utilizes an L/C filter to isolate the DC power from the GPS RF energy. This circuit supplies power

to the antenna via the center pin of the RF connector. The maximum current allowance through the V_ANT pin is 300 mA.

A diagram of the antenna supply circuit is shown in Figure 1.4. There is no short-circuit protection for the external power supply applying voltage to the V_{ant} line.

Figure 1.4: Antenna Supply Circuit

There is no impedance requirement at pin 2 (V_ANT). Pin 2 is usually driven by a low-impedance power supply. RF decoupling is done on the A12 board.

Radio Interference

Some radio transmitters, cellular phones, or other mobile communications equipment can interfere with the operation of GPS receivers. Thales Navigation recommends that you verify that nearby hand-held or mobile communications devices do not interfere with GPS receivers before setting up your project.

The A12 is equipped with an RF shield over the RF section of the receiver. This protects the sensitive components in this area of the board, and also eliminates emissions from this section. The RF shield is soldered to the board and must remain in place at all times. The mechanical shield case does provide a small degree of additional RF isolation. It is recommended that the mechanical shield case be used, but the A12 operates reliably without the mechanical shield case.

Getting Started

General

This section defines the procedures to get your A12 GPS OEM board operating as quickly as possible:

- Procedure for connecting the A12 to power, the antenna, and your equipment or system electronics
- Important communication parameters
- Instructions for establishing communications with the A12 using typical communications software with an IBM-compatible PC
- Procedure for sending common commands to the A12

Quick Start

If you have the A12 Evaluation and Development Kit, use it for quick setup and evaluation. Go directly to Chapter 4 for instructions. If you do not have the A12 Evaluation and Development Kit, proceed with the following instructions.

Connection Procedures

Board

Figure 2.1 shows the power and I/O connections to the 8-pin I/O connector on the board.

CAUTION

To avoid damage to the A12, always turn off the power supply before connecting or disconnecting to the 8-pin I/O connector.

Figure 2.1: Power and I/O Connections for Bare OEM Board

- 1. To interface to the board, you will need to connect to two different interface connectors:
 - I/O connector the I/O connector on the A12 OEM board is a Molex socket P/N 53254-0810. To mate with this socket, you will need to provide a board-based connector or construct a power-I/O cable. A cable requires a Molex terminal crimp housing P/N 51065-0800 and eight crimp pins P/N 50212-8100. Assemble a power-I/O cable using these parts, as shown in Figure 2.1.

There may be other mating connector options that are more appropriate for your application. Contact your supplier for additional mating connector information.

- **RF connector** The RF connector is a right-angled SMB connector.
- Once you have constructed a board-based connector or a power-I/O cable, connect the female plug on the cable to the 8-pin Molex I/O connector on the A12.
- Connect the wires of the power-I/O cable as specified in Table 2.1. Do not turn on power at this time; proceed with other connections as specified below.

Pin	Signal Designation	Function
1	VCC	Primary board power connection
2	V_ANT	Antenna power connection
3	V_BACK	Battery backup power connection
4	GND	Ground
5	RTCM	Receive Port B: Receive data at A12 from external device
6	RXD	Receive Port A: Receive data at A12 from external device
7	TXD	Transmit Port A: Transmit data from A12 to external device
8	1 PPS	1 PPS event marker output TTL

Table 2.1 Power/Input/Output Parameters

4. Once you have constructed the antenna interface cable, connect the antenna cable to the RF antenna connector on the A12 and connect your antenna.

For maximum reliability, connection and disconnection of the RF antenna connector should be minimized.

The A12 is designed to work with an antenna that includes an LNA. The antenna is powered via V_ANT and is isolated from DC ground. The gain of the antenna-preamplifier minus the loss of the cable should be between 10 and 35 dB.

Best results are obtained if the antenna has an unobstructed view of the entire sky. A ground plane is desirable but not necessary. Should you want the antenna stationary, try to locate it as high as possible and away from metallic objects such as towers, and large structures such as buildings. These objects may reflect the incoming GPS signals, causing multipath reflections that can reduce accuracy.

 With all connections made as described above, apply 3.3 or 5 VDC power to the A12 at pin 1 (VCC). Remember also to be sure power is applied to the antenna via pin 2 (V_ANT). Antenna power restrictions are defined in Chapter 1.

CAUTION

The A12 uses 5 VDC power, not 12 VDC. Connect the appropriate power input line (VCC) to a stable 5-volt source ONLY. The voltage can fluctuate no more than \pm 5%.

When the A12 is connected to power, it automatically begins its startup and acquisition routines, attempting to acquire satellites (SVs or Space Vehicles) within the field of view of the antenna.

To ensure the fastest possible restart times, you should also connect the A12 to a power backup source at pin 3 (V_BACK). Your backup source should be in the range of 2.7 to 3.6 VDC. Backup draws approximately 6 μ A, depending upon the backup voltage.

Serial Data Communication

Communication Port Setup

After performing the steps above, you are ready to command the A12 and receive data. The A12 serial port A must be connected to a PC, microprocessor, or other intelligent processing device, before you can issue commands. The A12 OEM board utilizes CMOS signal levels (+ 3.3 VDC, 0 VDC) for communication, not RS-232 levels (± 12 VDC). The A12 is also compatible with external TTL-level signals and will accept 5V signals on the receive port. If you plan to communicate directly with the A12 OEM board from a PC, you must first convert the PC RS-232 interface levels to TTL levels. Specific I/O interface levels are provided in Table 2.2.

CAUTION

Attempting to communicate to the A12 OEM board using RS-232 voltage levels will result in poor operation or failure in communication. Applying a negative voltage to the I/O pins could cause excessive current draw or damage to the A12.

Voltage	Minimum	Maximum
V _{il}	-0.5V	0.8V
V _{ih}	2.2 V	Vcc + 0.5V
V _{ol}		0.4V
V _{oh}	2.4V	

Table 2	2 Т	Interface	l evels
	(• <i>L</i>	michace	Levela

Table 2.3 lists the default communication parameters of the A12 at first power-up.

Baud	Data Bits	Parity	Stop Bits	Port
4800	8	None	One	А

 Table 2.3 Default A12 Communication Parameters

When first establishing communication with the A12, the communications interface must use these parameters, otherwise the A12 will not recognize any serial input. Once communication is established at 4800 baud, the A12 can be reconfigured to operate at a different baud rate by issuing \$PASHS commands to the serial port from the attached PC or other processing device.

RTS/CTS Considerations

Once you convert the A12 GPS OEM board TTL outputs to RS-232 levels, there is one other important consideration.

The RS-232 specification is very general, intended to cover a wide variety of computer-to-computer communication situations. As such, it contains a lot of controls that are not necessary in most situations. For the A12 OEM board, merely connecting GND to GND, TX1 to RX2, and TX2 to RX1 is all that is required. However, some computer software uses RTS (Request To Send) and CTS (Clear To Send); this is known as flow control. The purpose of these signals is to allow the intended receiver to hold off transmission until it is able to take care of the data. The transmitter will assert RTS and then wait until it sees CTS before beginning transmission. This avoids loss of data that could occur if the transmitter started before the receiver was ready. The A12 OEM board does not utilize flow control and therefore ignores RTS/CTS signals on the RS-232 line.

Most system integrators simply connect RTS to CTS at both ends of the communication channel. In this case, as soon as the transmitter asserts RTS, it sees CTS and begins transmission. Because the A12 OEM board does not utilize flow control, you may need to connect RTS to CTS at the computer or processor that is communicating with the A12. This is an individual judgement call which depends upon both the hardware configuration of the host and on the design of the software in the host. It may or may not be necessary, but should be considered in your interface design. The A12 OEM board does not.

Data Output

Even though the A12 may be calculating positions, it does not output any data until you send a message commanding it to do so.

Initial Operating Instructions

After the A12 is powered and running, you may send it command messages in order to change the output or modify operating parameters. The following procedure describes briefly how to send commands to and receive information from the A12 using an IBM-compatible PC. Many standard communications software packages allow you to interface with the A12. Be sure to send commands to Port A of the A12 receiver.

Your command can be typed in upper or lower case, and must be completed by pressing the <enter> key. If you have typed and sent the command correctly, you should get an ACK response for a correct command, and a NAK response for an illegal or incorrect command. To become familiar with the A12 messages, send a few common commands to the A12 and observe the responses.

1. Type: \$PASHQ,PRT and press <enter>. This command queries the communication setup of the port.

Pressing <enter> is equivalent to <CR><LF>.

2. The response message is:

\$PASHR,PRT,A,4

This message indicates port A of the A12 is using its default communications setup 4, which is 4800 baud, eight data bits, no parity, and one stop bit. For details on this and other commands and responses, refer to Chapter 5.

Operation

This section summarizes system setup, operation at power-up, input and output messages, serial port configuration, parameter settings and status, the satellite search algorithm, modes of operation, antenna position setting, NMEA outputs, and differential operation.

System Setup

Verify that the A12 is set up as described in Chapter 2.

Message Format

The A12 command/response firmware allocates the two RS-232 ports (A and B) to receive command messages from an external control device (such as a PC), and receive differential corrections from a reference station. Commands can be input to either port A or B, but only port A provides responses to commands.

Input Messages

The input messages comprise **set** command messages, and **query** command messages. The **set** commands instruct the A12 to perform a specified and often continuous activity; the **query** commands instruct the A12 to report its present status one time only. The general command messages comply with the NMEA 0183 standard to the following extent:

- NMEA 0183 ASCII strings following \$ character
- Headers are Ashtech NMEA style, registered with NMEA (i.e., PASH)
- Message IDs are Ashtech NMEA style
- Data items are separated by commas
- Checksum character delimiter and NMEA checksum bytes are recognized by the A12 but are optional. The hexadecimal checksum is

computed by exclusive OR-ing all of the bytes in the message between, but not including, the \$ and the *.

Message is ended with the standard NMEA message terminator characters, <CR> and <LF> (same as <enter>).ll command messages (set, query or general) recognize upper or lower case letters. They are accepted by <enter>. A valid set command causes the A12 to return the \$PASHR,ACK*3D, "acknowledged" response message. A set command containing a valid \$PASHS set command header followed by character combinations unrecognized by the A12 causes return of the \$PASHR,NAK*30, "not-acknowledged" response message. All other invalid set commands are ignored. Valid query and general command messages are acknowledged by return of the requested information, and all invalid query and general commands cause the A12 to return the \$PASHR,NAK*30 "not acknowledged" response message.

Output Messages

Output messages are messages the A12 sends to the PC or system electronics in response to a command message. These messages comprise general status messages, command acknowledged/not acknowledged messages, and GPS data messages. The general status messages have free-form Ashtech NMEA style formats. The command acknowledged/not acknowledged messages and GPS data messages comply with NMEA 0183 as follows:

- NMEA ASCII strings following \$-character
- Headers are standard NMEA or Ashtech NMEA style
- Message IDs are standard NMEA or Ashtech NMEA style
- Standard NMEA format messages contain hexadecimal checksum bytes
- Data items are separated by commas; successive commas indicate invalid or missing data (null fields)
- Message is ended with <CR><LF>, the standard NMEA message terminator characters

Serial Port Configuration

Port A provides two-way full duplex RS-232 communication. Be aware that the signals are, however, at TTL levels. The default transmit/receive protocol is 4800 baud, eight data bits, no parity, and one stop bit (8N1). The baud rate is adjustable using the **\$PASHS,SPD** speed set command; the data bit, stop

bit and parity protocol are always 8N1.

On initial power-up or after issuing the **\$PASHS,RST** (reset to defaults) command, the default is 4800 baud for both RS-232 serial ports A and B.

The baud rates between the A12 and the interfacing equipment must be the same for both the port and the device connected to that port.

To maintain communication with the A12 while changing the baud rate, issue the **\$PASHS,SPD** (set command) to change the A12 baud rate, then change the baud rate of the command device to match the new A12 rate.

Antenna Connection

The A12 requires that a compatible active antenna be connected to the antenna port for reliable operation. Antenna specifications are provided in Chapter 1. The antenna must have a clear view of the entire sky in order for the A12 to meet the specifications defined in this manual.

Satellite Search Algorithm

When the A12 is operated for the first time after receipt from Thales Navigation, or after the power and back-up battery have been disconnected, no almanac or ephemeris data are available. The A12 always assigns the first 12 elements of a 32-element table of SV PRN numbers to its 12 channels. Within 35 to 40 seconds after locking the first SV, the A12 time is set. The A12 computes its first position after three (for 2D) or four (for 3D) SVs are locked, provided that the satellite geometry is adequate. The A12 continuously stores the most recent almanac, ephemeris, and position data into its battery-backed memory, which allows for faster position computation when next turned on.

The A12 performs a cold start if there are no valid almanac or ephemeris data in the battery-backed memory, or if it has no previously known position; this is generally true if the A12 has been off for more than six months. With no SV information to help narrow the search, cold start typically requires about two minutes to compute the initial position. If the A12 has been off for less than six months but more than four to six hours, then the stored almanac and position data allow it to narrow the SV search and perform a warm start. In warm start the initial position is typically computed in about 45 seconds. The A12 will turn on with a hot start if its battery-backed memory contains valid almanac, ephemeris, and position data; this is generally true if the A12 has been off for no more than two hours. This data allows the A12 to search only for visible SVs in known locations, and the first position is typically computed in about 10 seconds.

If the A12 has a valid almanac and ephemeris, but has retained a last known position more than 1000 km from its actual location, the receiver should be reset using the \$PASHS,INI command to minimize start time. If not reset, this condition may cause a long delay in the start time of the receiver.

Parameter Settings and Status

Table 3.1 lists the default operational parameters. These parameters can be changed using the indicated set commands; detailed explanations of the set commands are presented in chapter 5. On initial power-up or after use of the **\$PASHS,RST** (reset to default command), the A12 reverts to its default parameter settings. To list the current status of these settings, there is one query command available:

\$PASHQ,PAR (general parameters)

The response message for the default values of the query command **\$PASHQ,PAR** (general parameters) is in the format shown below:

FIX:0 PEM:05 PDP:06 PMD:4 **HDP:04** DTM:W84 LTZ:+00.00 SAV:N CDS: AUTO DIF RTCM MODE:OFF PRT:B AUT:Y MAX:0015 LAT:0000.000000,N LON:00000.000000,E ALT:+00000.00 NMEA: ALM GGA GLL GSA GSV MSG POS RMC SAT VTG ZDA PER: 001.0 SPD: PORT A:5 PORT B:5 ANT: Y WAAS: Y

CAUTION

The **\$PASHQ,PAR** response message is free-form and subject to change in future firmware versions. These messages are not intended to be computer-readable.
Item	Default Value	Set Command	Page			
RECEIVER CONTROL COMMANDS						
Latitude	None	\$PASHS,POS	59			
Longitude	None	\$PASHS,POS	59			
Altitude	None	\$PASHS,POS	59			
Navigation position mode	4	\$PASHS,PMD	59			
2D altitude	0	\$PASHS,ALT	53			
HDOP mask	4	\$PASHS,HDP	54			
PDOP mask	6	\$PASHS,PDP	58			
Elevation mask	5 degrees above horizon	\$PASHS,PEM	58			
Datum	WGS-84	\$PASHS,DTM	53			
Satellites inhibited	none	\$PASHS,USE	66			
DGPS positioning	OFF	\$PASHS,RTC	97			
Auto differential mode	Enabled	\$PASHS,RTC,AUT	97			
Differential data age selection	15 seconds	\$PASHS,RTC,MAX	97			
Serial port A speed	4 (corresponds to 4800 bps)	\$PASHS,SPD	63			
Serial port B speed	4 (corresponds to 4800 bps)	\$PASHS,SPD	63			
Altitude position fix mode	0	\$PASHS,FIX	54			
Time zone offset	00:00	\$PASHS,LTZ	56			
Point positioning	N (disabled)	\$PASHS,PPO	60			
Save parameters	Y (save)	\$PASHS,SAV	63			
Initialize receiver & serial ports	4800 baud	\$PASHS,INI	55			
SBAS	Enabled and DGPS on	\$PASHS,WAS	66			
	NMEA COMMANDS					
Enable ALM msg to port	A, OFF	\$PASHS,NME,ALM	71			
Enable GGA msg to port	A, OFF	\$PASHS,NME,GGA	74			
Enable GLL msg to port	A, OFF	\$PASHS,NME,GLL	77			
Enable GSA msg to port	A, OFF	\$PASHS,NME,GSA	79			
Enable GSV msg to port	A, OFF	\$PASHS,NME,GSV	80			
Enable RMC message to port	A, OFF	\$PASHS,NME,RMC	86			
Enable VTG msg to port	A, OFF	\$PASHS,NME,VTG	91			
Enable ZDA msg to port	A, OFF	\$PASHS,NME,ZDA	93			
Enable POS msg to port	A, OFF	\$PASHS,NME,POS	83			
Enable SAT msg to port	A, OFF	\$PASHS,NME,SAT	88			
Receiver update interval	1 second	\$PASHS,NME,PER	82			

Table 3.1 Default Parameters

Saving New Parameter Settings

If you want to save any parameters changed by a set command, parameter values can be saved by the **\$PASHS,SAV,Y** set command. Once this command has been used, the A12 will use the saved parameters instead of the defaults as long as there is the appropriate battery backup voltage on pin 3 (V-back). Without battery backup, the parameters will **NOT** be saved. The command **\$PASHS,RST** always reinstates the defaults.

Position Modes

The A12 operates in two position modes, 3D and 2D. These modes are explained in detail in "Position Modes" on page 100.

Altitude Hold Definition

Two modes are available to determine what altitude is selected when the A12 is in altitude-hold mode. The **\$PASHS,FIX** set command can be used to select between these modes.

- In mode 0, the most recent altitude is used. This is either the one entered by using the \$PASHS,ALT or \$PASHS,POS set command or the one computed as part of a 3D position, whichever is most recent.
- In **mode 1**, only the last altitude entered by using the \$PASHS,ALT set command is used in the position fix solution.

On initial power-up or after use of the **\$PASHS,RST** default parameter reset command, the most recent antenna altitude is zero.

Antenna Position Setting

Two commands are available to enter the known antenna position:

\$PASHS,POS (position setting including latitude, longitude, altitude) **\$PASHS,ALT** (altitude for fixed 2D operation)

NMEA Outputs

The A12 allows you to output messages in NMEA format, and other messages through serial port A, as listed in Table 3.2.

Message	Туре	Description	Page
\$GPALM	NMEA	GPS almanac	71
\$GPGGA	NMEA	Position fix	74
\$GPGLL	NMEA	Geographic latitude/longitude	77
\$GPGSA	NMEA	GPS DOP and active satellites	79
\$GPGSV	NMEA	GPS satellites in view	81
\$GPRMC	NMEA	Recommended minimum specific GPS Data	86
\$GPVTG	NMEA	Course over ground and ground speed	91
\$GPZDA	NMEA	Time and date	93
\$PASHR,POS	Ashtech NMEA style	Position	83
\$PASHR,SAT	Ashtech NMEA style	Satellite status	89

Table 3.2 NMEA and Miscellaneous Output Messages

Any combination of these messages can be output through serial port A. The output rate is determined by the **\$PASHS,NME,PER** command, and can be set to any value between 1 and 999 seconds. Additional details are presented in the discussion of NMEA message commands in Chapter 5, *Command/ Response Formats*.

All standard NMEA messages are a string of ASCII characters delimited by commas and that comply with the NMEA standard 0183, Version 3.0. All non-standard messages are a string of ASCII characters delimited by commas using the Ashtech NMEA style response format.

Differential Operation

This section discusses differential operation, sources of error, messages for differential operation, and RTCM 104 format as it applies to a remote station.

General

Real-time "Broadcast" differential GPS positioning (DGPS) involves a reference (base) station computing SV range corrections and transmitting them to a remote (rover) unit. The A12 is operates as a remote unit. When a reference station transmits these corrections in real time to the A12 via a communications link, the A12 applies the corrections to its measured ranges and uses the corrected ranges to compute its position.

The base receiver determines range corrections by subtracting the measured range from the true range, computed by using an accurate position entered in the receiver. This accurate position must have been previously surveyed using GPS or some other technique.

SBAS Operation

The A12 unit has two channels dedicated for tracking Satellite-Based Augmentation System (SBAS) satellites. You can configure the A12 receiver to track GPS satellites on all 12 channels by disabling WAAS reception using command \$PASHS,WAS,OFF (refer to page 66). In the DGPS remote mode, the A12 automatically utilizes corrections from the SBAS (WAAS/EGNOS/ MSAS) satellites to provide differentially corrected position. However, RTCM (local) corrections take priority over SBAS, i.e., if both corrections are available, RTCM corrections will be used. The A12 does not use the ranging information provided in the SBAS signals for position computation.

As a stand-alone receiver, and with SA (Selective Availability) off, the A12 typically computes a position within about 3 meters (50%) of truth but mostly within 5 meters (95%). In differential mode, the A12 can achieve 1 m or better precision using local corrections, and 2-4 m accuracy utilizing SBAS (WAAS/EGNOS/MSAS) corrections. For local DGPS operation, a communication link must exist between the base and remote receivers. The communication link can be a radio link, telephone line, cellular phone, communications satellite link, or any other medium that can transfer digital data.

Sources of Error

The major sources of error affecting the accuracy of GPS range measurements are SA (Selective Availability), SV orbit estimation, SV clock estimation, ionosphere, troposphere, and receiver noise in measuring range. The first five sources of error are almost totally removed using differential GPS.

Receiver noise is not correlated between the base and the remote receiver and is not cancelled by differential GPS.

Total position error (or error-in-position) is a function of the range errors (or errors-in-range) multiplied by the PDOP (three-coordinate position dilution of precision). The PDOP is a function of the geometry of the SVs.

RTCM Messages

In DGPS mode the A12 accepts RTCM SC-104 Version 2.2 differential formats. The A12 is set to receive RTCM corrections in either of the two ports by issuing the set command **\$PASHS,RTC,REM,c** where c is the port. Of RTCM message types 1 through 64, the A12 processes type 3 for station location, and types 1 and 9 for RTCM differential corrections. The differential corrections are automatically processed by the A12.

It is recommended, but not required, that RTCM information be input on port B.

RTCM message type 3 provides user information from the reference (base) station, while RTCM message types 1 and 9 provide differential correction information. The reference station sends types 1 and 9 continuously and may send type 3 periodically. The \$PASHS,NME,MSG set command and \$PASHQ,MSG query command cause the most recent RTCM input data to be reported, via the \$GPMSG message (not implemented in initial release).

On initial power-up or after use of the **\$PASHS,RST** (reset to defaults command) the A12 default automatic differential mode is OFF, and the default is 15 seconds for the maximum age of an RTCM differential correction, above which it is not be used. If the automatic mode is not enabled by the **\$PASHS,RTC,AUT** set command and the differential correction data is older than the maximum age specified by the **\$PASHS,RTC,MAX** set command, the A12 does not return antenna position data.

In automatic mode, if no differential correction data is received or the age of data is older than the specified maximum age, the A12 returns the uncorrected position or an SBAS DGPS position.

RTCM 104 Format, Version 2.2

The A12 uses six-of-eight format (data bits a1 through a6 of an eight-bit byte) for communication between the reference station and user equipment.

The A12 can accept any type of RTCM message, however it decodes types 1, 3, and 9, as detailed in Table 3.3, and uses only types 1 and 9 for differential corrections.

Message Type	Contents of message	
1	Differential GPS corrections	
3	Reference station parameters	
9	High-rate differential GPS corrections	

Fable	3.3	RTCM	Format
	0.0		

Pulse Generation (1 PPS)

The A12 calculates time and outputs the first 1 PPS pulse only after it has obtained an initial position fix. The A12 continues to output 1 PPS during position outages, but with reduced accuracy. Figure 3.1 shows the timing relationships. The 1 PPS output is accurate to ± 1 msec if the receiver is within 300 meters of the last valid position. Time is reported in the NMEA message

ZDA. The 1 PPS output is available on pin 8 of the A12 8-pin I/O connector.

Figure 3.1: Relationship of GPS Time in PRN Record to 1 PPS Pulse

Figure 3.2 shows the 1 PPS pulse characteristics. The 1 PPS pulse occurs when the signal goes high. The 1 PPS is generated exactly on the GPS second, and the pulse remains high for 1millisecond.

Figure 3.2: PPS Pulse

Magnetic Variation and Geoid Models

The A12 uses the WMM-2000 magnetic variation model. Details of this model can be obtained from the National Geophysical Data Center in Boulder, CO.

The A12 uses a proprietary geoidal height model with a resolution of 10 degrees latitude and longitude, using interpolation to obtain height at a

particular location. Details can be obtained upon request from Thales Navigation Technical Support.

A12 Development Kit

Overview

The A12 Development Kit, Figure 4.1, lets you rapidly set up and operate the A12 to determine suitability for your application. The kit can also be used for software development (experimenting with commands, etc.) and for troubleshooting once your system is deployed.

Figure 4.1: A12 Development Kit

The kit provides the following conveniences which you would otherwise have to devise yourself:

- Built-in RS-232 interface does TTL to RS-232 conversion
- Standard SMA antenna connector
- Standard serial interface connector connects directly to PC
- Packaged unit protects OEM board in rugged test and evaluation environments
- Connects to standard 12 VDC power (such as a vehicle battery)
- Built-in battery eliminates need for battery backup connection
- Wide range of input power provides flexibility in test setups
- All interface cabling

Mounting the A12 Sensor

The A12 Sensor can be mounted in any orientation. Mounting flanges are provided to accommodate the four #6 mounting screws. Keyhole-shaped holes on the mounting flanges allow installation and removal of the unit while leaving the screws in place. A full-size mounting template is supplied with each A12 Sensor. Table 4.1 lists dimensions of interest.

Figure 4.2: Mounting Dimensions (Inches)

Characteristic	Description
Length	4.12 in (104.6 mm)
Width	4.38 in (111.2 mm)
Thickness	1.162 in (29.5 mm)
Weight	8.5 oz (240 g)
Mounting Method	Four #6 screws
Mounting hole diameter	0.125 in (3 mm)
Mounting hole location	Template supplied
Power	10 to 18 VDC, 12 VDC nominal Typical current consumption is 110 mA using recom- mended antenna (Aromat VIC-1)

Table 4.1 A12 Sensor Dimensions

Configuring Your Kit for Operation

To configure and operate your A12 Evaluation and Development kit, follow the six steps below in sequence. For detailed mounting instructions and detailed cable connection information, refer to the appropriate sections later in this chapter.

Step 1 - Inventory Your Equipment

Check your A12 Development Kit to ensure that all items are available, as shown in Figure 4.1 and listed in Table 4.2.

Item	Description	
Sensor	A12 sensor	
Power supply	Wall-mount power supply, 12 VDC 800 mA	
Cable	Cigaret lighter adapter cable	
Cable	DB9 male-to-female I/O cable	
Cable	Auxiliary cable, 1 PPS out, RTCM in	
Manual	User guide	
Floppy disk	Evaluator software	

Table 4.2 Evaluation and Development Kit Inventory

Step 2 - Load the Evaluate software into your computer

Refer to the Evaluate User's Guide P/N 630063. Follow the setup and software loading instructions in the guide.

When you load the Evaluate software into the PC, make sure the software version is 6.05 or later, earlier versions will not work with the A12. After your software is loaded, there is no need to launch the Evaluate application. You will be instructed to do this in a later step.

Step 3 - Prepare Your Equipment for Operation

Connect devices as shown in Figure 4.3. It is very important to follow instructions 1 through 6 below.

CAUTION

DO NOT connect power at any time during this step.

Figure 4.3: Setup Using A12 Development Kit

- 1. Connect the serial data cable DB9 M-F to the COMM port (DB9 connector) on the A12 sensor.
- Connect the other end of the serial data cable to an initialized serial port on your IBM-compatible computer. If the serial port of your computer is not initialized, it will not be recognized by the Evaluate software.

Within the A12 sensor, the RTS/CTS lines of the interface cable are connected. This is done to ensure that your computer will always receive an immediate CTS signal when it asserts RTS as part of its communication process. Refer to Table 4.3 on page 36 for specific interconnection details.

- Connect the power connector on the A12 sensor to the appropriate adapter (power supply, vehicle cigarette lighter, or external DC power source) but **DO NOT** connect power at this time.
- 4. Connect the antenna to the GPS ANT connector on the back of the A12 Sensor. You may connect a different active antenna to the A12 Sensor, but please refer to Table 1.6 on page 8 for antenna specifications. If it requires a voltage level other than 4.5 VDC, you must supply your own external power and use a DC block at this connector in order to ensure reliable operation of your antenna and A12 Sensor.

CAUTION

You must provide a DC block if you are providing external power to the antenna.

Also note that if you are using a passive antenna with the A12 Sensor, make sure that it has enough gain to provide the RF signal strength needed at the input to the OEM board for reliable operation. The suggested RF cable length for a passive antenna is six inches. If you use your own antenna, it must meet the specifications listed in Table 1.6 on page 8.

- 5. If you are using the 1PPS output, connect the 1 PPS output and signal ground from the auxiliary cable connector on the A12 sensor to the appropriate recording device.
- If you are using RTCM corrections, connect RTCM IN and signal ground from the auxiliary cable connector to the device port that is outputting the RTCM corrections.

Power and Signal Connections

Figure 4.4 shows the physical configuration of the connector pinouts. Table 4.3 defines power and input/output signals.

Figure 4.4: Connector Pinouts

Connector	Pin	Signal	Function		
Power In	1	Ground	BLACK - Chassis ground (= 12 VDC return)		
	2	Power return	DC ground		
	3	Power In (DC)	10-18 VDC +		
	Mole>	k P/N 39-30-303	5 Mate 39-01-4030 Terminals 39-00-0039		
COMM (DB9 M-F)	1	CD	Carrier detect out - true (+V) when power applied to A12. Tied to DSR.		
	2	RXD	Received data out - TXD from A12		
	3	TXD	Transmitted data in - RXD into A12'		
	4	DTR	Data terminal ready - not connected		
	5	Ground	Signal ground - connected to DC return in A12		
	6	DSR	Data set ready out - true (+V) when power applied to A12. Tied to CD		
	7	RTS	Request to send in		
	8	CTS	Clear to send out		
	9	RI	Ring indicator out - not connected		

Table 4.3	Power/Input/Output Connections
-----------	--------------------------------

Connector	Pin	Signal	Function	
Auxiliary	1	1 PPS out	Brown wire - Unbuffered TTL output	
	2	Ground	Red wire - Signal ground for 1 PPS	
	3	RTCM IN	Orange wire - RS-232 RXD (RTCM) into A12	
	4	Ground	Yellow wire - Signal ground for RTCM IN	
	Molex	CP/N 39-30-304	5 Mate 39-01-4040 Terminals 39-00-0039	

 Table 4.3 Power/Input/Output Connections (continued)

Step 4 - Position the GPS Antenna

Regardless of the antenna you use, it is very important that the antenna have a clear view of the entire sky. Obstructions may cause satellites to be hidden from view, creating a situation where the A12 will be unable to provide a position report.

Be aware that your receiver reports the position of the **GPS antenna**, not the position of the receiver. Please take this into account when making accuracy measurements.

When the A12 Sensor is connected to power it automatically provides +5VDC power to its internal A12 OEM board and 4.5 VDC power to the GPS antenna connector on the rear of the A12 Sensor. The 4.5VDC power signal on the antenna connector is designed for the antenna included in the kit. To ensure reliable operation, simply connect the antenna to the antenna connector and locate the antenna such that it has a clear view of the entire sky.

"Clear view of the entire sky" means exactly that. Locating the antenna on top of your computer monitor inside your office does not provide a clear view of the sky. Moving it to a window may help, but the window provides only a partial view of the sky. Generally, for optimum operation your antenna must be outside, away from any natural or man-made object that obstructs or reflects radio frequency signals. Failure to locate the antenna with a clear view of the sky will impact A12 start time and accuracy.

Step 5 - Power On the Equipment

Once you have completed steps 1 through 4, you are ready to power on your equipment. Ensure that, if you are using your own antenna, it meets the specifications listed in Table 1.6 on page 8, and it operates at 4.5 VDC. If it does not operate at 4.5 VDC, you must provide the correct voltage and must have installed a DC block between the SMA connector on the A12 Sensor rear panel and your antenna cable.

Connect the power cable to a power source. The PWR ON light should now be lit.

When the A12 Sensor is turned on for the first time, be aware of the following conditions:

1. The first power-on may require that A12 search several minutes to lock on to enough satellites to compute a position, assuming the antenna has a clear view of the entire sky. If the antenna is obstructed, the initial start may take longer to acquire satellites. "Cold starts" will typically take around 2 minutes.

CAUTION

If the A12 has a valid almanac and ephemeris, but has retained a last known position more than 1000 km from its actual location, the receiver should be reset using the \$PASHS,INI command to minimize start time. If not reset, this condition may cause a long delay in the start time of the receiver.

- The A12 serial interface turns on at 4800 baud. Your external device (e.g., P.C.) must initially communicate with the A12 at this rate. After communication is established, you can use the PC to change the baud rate.
- 3. Once the A12 is powered on and has completed its initial start process, it immediately begins calculating position. To output position messages, you must turn on the outputs you want by using the external device (PC) to issue the appropriate commands (refer to Chapter 5). The messages will contain valid data once the A12 has completed its cold, warm, or hot start sequence.
- 4. Once the A12 starts tracking satellites and has a valid position fix, the tracking LED flashes to indicate status. Refer to Table 4.4 for tracking LED operation.

Tracking LED State	1 PPS Signal Status	NMEA Affirmative Message*	NMEA Negative Message*	Tracking Status
Off	No	-	-	Not tracking satellites
Green flash	Yes	Yes	No	Tracking satellites
Off	Yes	No	Yes	Not tracking satellites
Red flash	Yes	No	No	No NMEA messages available on port A to confirm tracking

Table 4.4 Tracking LED Operation

*Tracking LED operation requires 1 PPS output and at least one NMEA message to be output on port A which includes Universal time. The NMEA messages that output Universal time are GGA, GLL, POS, and RMC. A12 stops incrementing time in these messages when it is not tracking satellites. An affirmative message indicates that A12 is tracking satellites and the Universal time in the NMEA messages is changing. A negative message indicates Universal time that is not updated or a null field for time in these messages.

The Evaluate software provides simple communication programs designed to interface to A12 Sensor. Move on to Step 6 to initiate communication with the A12 Sensor.

Thales Navigation recommends that first time users always operate the A12 Sensor first with Evaluate software. Once operation is understood, use Evaluate or other terminal program to send any set or query commands defined in Chapter 5. For configuring A12 Sensor for RTCM operation, refer to Chapter 3, *Operation* and Chapter 5, *Command/ Response Formats*.

Step 6 - Using Evaluate Software

With your A12 Sensor powered on, you are ready to communicate to it using the Evaluate software. Open the Evaluate application on your computer. When the **Evaluate** opening screen, Figure 4.5, appears select the appropriate activity in the **Start From** menu; for the first start-up, this selection will be **Connect to GPS Receiver**. From this point on, follow the instructions in the Evaluate User's Guide.

Figure 4.5: Evaluate Opening Screen

B12 Board and Sensor

Overview

This chapter presents a hardware description of the B12 GPS OEM board and sensor, defines the RF interface and the power/input/output signal parameters, and lists power requirements and environmental specifications. The B12 board and sensor have the same firmware as the A12, and support all commands and messages described for the A12.

B12 Board

The B12 GPS board, Figure 5.1, is identical to the A12 in functionality and operation. It differs only in dimensions and hardware specifications.

Figure 5.1: B12 OEM Board

Physical Configuration

The B12 GPS board has an 8-pin I/O connector (0.1 inch header) and supports CMOS/ TTL level signals. Table 5.1 describes I/O connector pinout. The B12 board has a standard SMB RF connector to connect to a GPS antenna. A right-angle bulk-head mount male SMB is used for easy integration. The center conductor supplies power to the low-noise amplifier (LNA) of an active antenna. The power supplied to the antenna is the same as the power input to the board on

I/O pin 2. The antenna open/short status information is available in the PAR query response message (see page 56).

Pin	Function	Description	
1	TXD 2	Port 2 transmit, CMOS/TTL	
2	VCC	5VDC ±5%, 55-70 mA typical	
3	TXD 1	Port 1 transmit, CMOS/TTL	
4	V _{backup}	Battery back-up power (BBU) +2.7 VDC to +3.6VDC, 6µA typical	
5	RXD 1	Port 1 receive, CMOS/TTL	
6	1 PPS	1PPS (pulse-per-second), CMOS/TTL, active low signal	
7	RXD 2	Port 2 receive, CMOS/TTL	
8	GND	Ground, power and signal	

Table 5.1 Connector Pinout

The B12 board provides four 0.125 inch mounting holes that will accept 3/16 inch round or hex standoffs with 3/8 inch height, and # 2-56 or M2 mounting screws. Space-constrained environments may require different stand-offs. Low-profile RF shields are used to enclose the RF circuitry. These shields reduce emissions and provide some degree of ESD protection while handling. Refer to the mechanical drawing (Figure 1.2 on page 4) for dimensions and clearances.

Interface Connector and Power Requirements

The I/O connector is an 8-pin header (2 x 4) that uses 0.023 inch (0.584 mm) long square pins on a 0.100 inch (2.54 mm) spacing. The B12 board requires +5 VDC \pm 5% on pin 2. The current consumption is typically 55 - 70 mA, excluding the antenna. The B12 board also requires a 2.7 – 3.6 VDC for battery back-up (BBU) power to keep the receiver's RAM memory alive during power off. However, the design allows you to apply 5VDC to the backup power (pin 4) when the board is powered. Care should be taken not to apply more than 3.6 VDC when the unit is powered off. The RAM memory is used to store the setup parameters, GPS time, almanac, ephemeris and the last position fix for faster acquisition and better start times. The current

consumption for battery back-up is typically 6 μ A. Table 5.2 below lists all the power specifications for the B12 board.

Table 5.2	Power	Requirements
-----------	-------	--------------

Signal	Voltage	Current	Pin No.
V _{cc}	+4.75 to +5.25	55 to 70 mA typical	2
Battery backup	+2.7 to +3.6	0 μA with prime power 6μA typical @ 3.3V, 25°C without prime power	4
Ground	0	-	8

Serial Interface and Signal Levels

The B12 board has 2 serial ports. Port 1 supports communications with the B12 board using I/O commands. The B12 has the same serial interface as A12 and supports all commands and messages listed in this manual. However, the signal levels on the serial ports are CMOS/TTL compatible. Output signal high is equal to V_{cc} . Output signal low is equal to 0 V.

Port 2 is input only for receiving DGPS corrections. For DGPS input, the board will accept the standard RTCM-SC-104 V2.2, type 1, 3, and 9 messages in the 6 of 8 bits rolled format.

The data configuration on both ports is the standard 8 data bits, 1 start bit, 1 stop bit, no parity. The baud rates supported are: 1200, 4800, 9600, 19200, 57600 and 115200. Please refer to the command SPD on page 63 to change the baud rate of the serial ports. Default baud rate for port A is 9600.

The 1PPS pulse is output on I/O pin 6 and is also CMOS/TTL compatible. However, the 1 PPS pulse in B12 is active low compared to A12 which is active high. The accuracy of the 1PPS signal is the same as in A12, please refer to page 25 for more details on 1PPS operation.

Environmental Specifications and Dimensions

The environmental specifications and other limitations for the B12 board are listed in Table 5.3.

Dimensions and mounting Configuration

Dimensions and mounting configuration are shown in Figure 5.2.

Condition	Specification	
Operating Temperature	-30°C to +80°C	
Storage Temperature	-40°C to +85°C	
Humidity	95% RH non-condensing @ +60°C	
Vibration	0.008 g 2 /Hz 5 to 20 Hz 0.05 g 2 /Hz 20 to 100 Hz 3 dB/octave 100 to 900 Hz	
Speed limitations	1000 knots (514 m/sec)*	
Altitude limitations	60,000 feet (18,288 m)*	
* The B12 produces no valid position information beyond these limits.		

 Table 5.3 Environmental Limitations

Figure 5.2: B12 Dimensions and Mounting Configuration

B12 Sensor

The B12 Sensor, Figure 5.3, is similar to the A12 Sensor and has the same I/O connectors and interface. It only differs from the A12 in dimensions. The B12 specifications and dimensions are listed below. The B12 is also available in a development kit similar to the A12. Please refer to Chapter 5 - *A12 Development Kit* for more details on the development kit features.

Figure 5.3: B12 Sensor

Specifications

Table 5.4 lists the specifications of the B12 Sensor.

Table 5.4	B12 Sensor	Specifications
-----------	------------	----------------

Characteristic	Description	
Length	5.12 inches 130 mm	
Width	4.38 Inches 111.2 mm	
Thickness	1.16 Inches 29.5 mm	
Weight	8.5 oz 240.0 gr	
Operating temp	-30 C to +70 C -22 F to 158 F	
Storage temp	-40 C to +85 C -40 F to +185 F	

Characteristic	Description
I/O ports	Two RS-232
Input voltage	10 to 18 VDC
Current consumption	70 to 90 mA
Power consumption	1 watt typical

Table 5.4 B12 Sensor Specifications (continued)

Table 5.5 Power/Input/Output Connections

Connector	Pin	Signal	Function	
Power In	1	Ground	BLACK - Chassis ground (= 12 VDC return)	
	2	Power return	DC ground	
	3	Power In (DC)	10-18 VDC +	
	Mole	P/N 39-30-303	5 Mate 39-01-4030 Terminals 39-00-0039	
COMM (DB9 M-F)	1	CD	Carrier detect out - true (+V) when power applied to B12. Tied to DSR.	
	2	RXD	Received data out - TXD from B12	
	3	TXD	Transmitted data in - RXD into B12'	
	4	DTR	Data terminal ready - not connected	
	5	Ground	Signal ground - connected to DC return in B12	
	6	DSR	Data set ready out - true (+V) when power applied to B12. Tied to CD	
	7	RTS	Request to send in	
	8	CTS	Clear to send out	
	9	RI	Ring indicator out - not connected	
Auxiliary	1	1 PPS out	Brown wire - Unbuffered TTL output, active low signal	
	2	Ground	Red wire - Signal ground for 1 PPS	
	3	RTCM IN	Orange wire - RS-232 RXD (RTCM) into B12	
	4	Ground	Yellow wire - Signal ground for RTCM IN	
	Molex	P/N 39-30-304	5 Mate 39-01-4040 Terminals 39-00-0039	

Command/Response Formats

Overview

The commands and queries described in this chapter are common to A12, A12 Sensor, B12, and B12 Sensor.

This chapter details the formats and content of the serial port commands through which the receiver is controlled and monitored. These serial port commands set receiver parameters and request data and receiver status information. Use the program REMOTE.exe software or any other standard serial communication software (including Thales Navigation's Evaluate Software) to send and receive messages. Note that the baud rate and protocol of the computer COM port must match the baud rate and protocol of the receiver port for commands and data to be successfully transmitted and received. The receiver default protocol setting is 8 data bits, 1 stop bit, no parity, and 4800 baud.

All commands sent by the user to the receiver are either **Set** commands or **Query** commands. **Set** commands generally change receiver parameters and initiate data output. **Query** commands generally request receiver status information. All set commands begin with the string \$PASHS and all query commands begin with the \$PASHQ string. \$PASHS and \$PASHQ are the message header and are required for all commands. All commands must end with <Enter> or <CR><LF> to transmit the command to the receiver. If desired, an optional checksum may precede the <Enter> characters. All response messages end with a <CR><LF>.

The serial commands are presented in three separate groups:

- **General Receiver commands** relate to general receiver operations. The discussion of these commands begins on page 49.
- NMEA message commands control standard NMEA data message output or NMEA style message output. The discussion of these commands begins on page 68.
- RTCM commands control RTCM differential operation. The discussion of these commands begins on page 95.

Within each group, the commands are listed alphabetically and described in detail. Information about the command includes the syntax, a description, the range and default, and an example of how the command is used. The syntax includes the number and type of parameters that are used or required by the command. These parameters may be either characters or numbers depending upon the particular command. The parameter type is indicated by the symbol that is a part of the syntax. Table 6.1 defines the parameter symbols.

Symbol	Parameter Type	Example
d	Numeric integer	3
f	Numeric real	2.45
с	1 character ASCII	N
х	1 character ASCII	А
s	Character string	UDD
m	Mixed parameter (integer and real)	3729.12345
h	Hexadecimal digit	FD2C

Table 6.1 Command Parameter Symbols

For example, for the receiver command

\$PASHS,ALT,f

the parameter f indicates that the command accepts a single parameter that is a real number such as 0.5 or 10.0. If a character is entered instead, the command will be rejected. Generally speaking, the parameter must be in the specified format to be accepted. However, most parameters that are real numbers (f) will also accept an integer. For example, in the case of the ALT command the receiver will accept both 10 and 10.0. The receiver commands are used to change or display various receiver operating parameters such as antenna position and PDOP mask. Commands may be sent to the receiver through any available serial port.

A12 utilizes two serial ports. Port A is full duplex and is used as the primary two-way communication port for the receiver. When commands are input to this port, the A12 returns the appropriate response to this port. Port B is half-duplex, therefore it accepts input messages but does not output messages; Port B accepts only RTCM correction input. It is possible to send a Set or Query command to port B, but the command must specify that the response message be sent to port A by using an "A" in the command field that identifies the serial port to which the response should be sent. If this is not done, a command sent to port B will generate no response through port A or B. In fact, there is no response feedback through port B to indicate if the command was rejected or accepted.

Set Commands

The general structure of the set commands is:

\$PASHS,str,x <Enter>

where **str** is a 3-character string identifier, and **x** is one or more data parameters that will be sent to the receiver. For example, the set command to change the altitude of the antenna to 100.25 meters is:

\$PASHS,ALT,+100.25 <Enter>

If a set command is accepted, an acknowledgment is returned in the form:

\$PASHR,ACK*3D

If a set command is not accepted, an non-acknowledgment is returned in the form **\$PASHR,NAK*30**. If a command is not accepted, check that the command has been typed correctly, and that the number and format of the data parameters are correct.

Query Commands

The general structure of the query command is:

\$PASHQ,str,x <Enter>

where **str** is a 3-character string identifier and **x** is the serial port where the response message will be sent. The serial port field is optional. If the serial port is not included in a query command, the response is sent to the current port. For example, if you are communicating with the receiver on Port A and

send the following query command:

\$PASHQ,PRT <Enter>

the response will be sent to port A.

The response message may be in comma-delimited or free-form table format, depending upon the query command. Be aware that not every set command has a corresponding query command or response message.

Table 6.2 summarizes the set and query commands that do not have standard NMEA or NMEA style responses. These are used primarily to set receiver parameters or query receiver for parameters. Commands that generate standard NMEA responses are described in "NMEA Data Message Commands & Responses" on page 68. The pages shown in the table presents detailed descriptions of each command/query/response.

Command	Description	Page
\$PASHS,ALM	Upload almanac data	52
\$PASHS,ALT	Set ellipsoidal height of antenna	53
\$PASHS,DTM	Select datum to use	53
\$PASHS,FIX	Set altitude position fix mode	54
\$PASHS,HDP	Set HDOP mask for position computation	54
\$PASHS,INI	Initialize receiver, set baud rate to specified value	55
\$PASHS,LTZ	Set local time zone	56
\$PASHQ,PAR	Receiver parameters query	56
\$PASHS,PDP	Set PDOP mask	58
\$PASHS,PEM	Set position elevation mask angle	58
\$PASHS,PMD	Set position mode	59
\$PASHS,POS	Set antenna position	59
\$PASHS,PPO	Set point positioning mode	60
\$PASHQ,PPO	Query point positioning status	60
\$PASHQ,PRT	Serial port baud rate query	61
\$PASHQ,RID	Receiver identification query	62
\$PASHS,RST	Reset receiver parameters to default values	62
\$PASHS,RTC	Set receiver to RTCM remote mode	98
\$PASHQ,RTC	Query RTCM status	96
\$PASHS,SAV	Save user parameters.	63
\$PASHS,SPD	Set serial port speed	63
\$PASHS,UDD	Set user-defined datum parameters	64
\$PASHQ,UDD	Query user-defined datum parameters	65
\$PASHS,UID	Set unit ID number	65
\$PASHQ,UID	Query unit ID	65
\$PASHS,USE	Set satellites to track or not track	66
\$PASHS,WAS	Enable/disable WAAS reception	66
\$PASHS,ZDA	Upload initial real-time clock value	66

Table 6.2 Summary of General Receiver Set/Query Command	ds
---	----

ALM: Upload Almanac Data

\$PASHS,ALM

Allows data to be loaded into the almanac store. This is used during aided initialization, and should be used if it is known that the data available to the receiver is invalid. The structure is

\$PASHS,ALM,d1,d2,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11

where the parameters are as defined in Table 6.3.

Parameter	Description	Range
d1	Satellite PRN number	132
d2	GPS week	09999
h1	SV health (in ASCII hex)	2 bytes
h2	Eccentricity (in ASCII hex)	4 bytes
h3	Almanac reference time (in ASCII hex)	2 bytes
h4	Inclination angle (semicircles - in ASCII hex)	4 bytes
h5	Rate of ascension (semicircles - in ASCII hex)	4 bytes
h6	Root of semi-major axis (in ASCII hex)	6 bytes
h7	Argument of perigee (semicircle - in ASCII hex)	6 bytes
h8	Longitude of ascension mode (semicircle - in ASCII hex)	6 bytes
h9	Mean anomaly (semicircle - in ASCII hex)	6 bytes
h10	Clock parameter (seconds - in ASCII hex)	3 bytes
h11	Clock parameter (sec/sec - in ASCII hex)	3 bytes

Table 6.3 ALM Parameters

Data is in the format of the NMEA almanac message (\$GPALM). The data should be sent using 32 separate messages, one per satellite.

In normal usage, this command should not be needed. However, it can be used in cases where it is known that the almanac data is significantly different, as it may speed up acquisition of the satellites.

ALT: Set Ellipsoidal Height of Antenna

\$PASHS,ALT

Sets the ellipsoidal height of the antenna, where $f = \pm 99999.99$ meters and must include the sign (+ or -). The receiver uses this data in the position calculation for 2-D position computation. The structure is

\$PASHS,ALT,f1

where the parameters are as defined in Table 6.4.

Table 6.4 ALT Parameters

Parameter	Description	Range
sign		+ or -
value	Altitude in meters. Default is 0.	099999.99

Example: Set ellipsoidal height of antenna to 100.25 meters:

\$PASHS,ALT,+100.25 <Enter>

Example: Set ellipsoidal height of antenna to -30.1 meters:

\$PASHS,ALT,-30.1 <Enter>

DTM: Select Datum to Use

\$PASHS,DTM,s

Selects the geodetic datum used for position computation and measurements, where s is a 3-character string that defines a particular datum or USR (user-defined datum). Parameters for a user-defined datum are entered with the **\$PASHS,UDD** command. WGS-84 is the default datum. If this command is used to select a datum but no datum has been entered via the UDD command, then the output remains WGS-84.

Example: Select user-defined datum for position computation:

\$PASHS,DTM,USR <Enter>

where the parameters are as defined in Table 6.5.

Table 6.5 DTM Parameters

Parameter	Description	Range
USR	WGS-84 or user-defined using the command \$PASHS,UDD.	W84 or USR

FIX: Altitude Position Fix Mode

\$PASHS,FIX

Sets altitude hold position fix mode for the altitude used (for 2D position determination), where d is 0 or 1. This command must be used with the \$PASHS,PMD command. The default is 0. The structure is

\$PASHS,FIX,d

where d is as defined in Table 6.6.

 Table 6.6
 FIX Parameters

Parameter	Description
d	 d = 0 (default): The most recent antenna altitude is used in antenna hold position computation. The altitude is taken from either the altitude entered by the \$PASHS,ALT command, or the last altitude computed. d = 1: Always use the altitude set by the \$PASHS,ALT command.

Example: Fix altitude to always use the entered altitude:

\$PASHS,FIX,1 <Enter>

HDP: Set HDOP Mask

\$PASHS,HDP

Set the value of the Horizontal Dilution of Precision (HDOP) mask, where d is a number between 0 and 99 (default = 4). The HDOP mask is used to set accuracy limits on A12 position outputs while operating in the fixed 2D mode. In this mode, if HDOP is exceeded no position is output. In 3D mode the HDOP mask is ignored. The command structure is

\$PASHS,HDP,d

where d is the value of the HDOP mask as defined in Table 6.7.

Example: Set HDOP mask to 6.

\$PASHS,HDP,6 <Enter>

Table 6.7 HDOP Parameters

Parameter	Range	Range
d	Value of the HDOP mask. Default is 4.	099

INI: Receiver Initialization

\$PASHS,INI,d1,d2,d3,d4,d5,c1

The INI command resets the receiver memory, and sets the serial port baud rate to the specified rates. Unlike other set commands, if the INI command is successfully entered, then the receiver does not return a receiver acknowledgement (\$PASHR,ACK), but immediately starts the initialization. The parameters are as defined in Table 6.8.

Parameter	Description	Range	Default
d1	Port A baud rate code: 2 = 1200 4 = 4800 5 = 9600 6 = 19200 8 = 57600 9 = 115200	2 - 9	4 (4800 baud)
d2	Port B baud rate code	0-6	4
d3	Reserved	null	n/a
d4	Reserved	null	n/a
d5	Memory reset code 0 = no memory reset 1 = reset internal memory 5 = clear ephemeris but not almanac, position, or time	0, 1,5	n/a
c1	Reserved	null	n/a

Table 6.8 INI Parameters

Parameters d3, d4, and c1 must be entered as null (i.e., include commas), or the command will respond with NAK.

Example: Set baud rate of port A to 4800, port B to 4800, and reset all memory.

\$PASHS,INI,4,4,,,1, <Enter>

LTZ: Set Local Timezone

\$PASHS,LTZ

Sets the timezone offset to be added to local time to get GMT. The structure is

\$PASHS,LTZ,d1,d2

where the parameters are defined in Table 6.9. The response is ACK/NAK.

Table 6.9 LTZ Parameters

Parameter	Description	Range
d1	GMT = local time + time offset: hours	± 0013
d2	GMT = loca ltime + time offset: minutes	0059

The default is 00,00 i.e. a time offset of zero. This command affects the output of the \$GPZDA response.

PAR: Receiver Parameter Query

\$PASHQ,PAR

Returns the status of general receiver parameters. The structure is

\$PASHQ,PAR,x

where x is the optional output port (A is the only valid value for x).

A typical response is shown below.
CAUTION

The \$PASHQ,PAR response message is free-form and subject to change in future firmware versions. These messages are not intended to be computer-readable.

Table 6.10 defines the response parameters.

Table 6.10 PAR Parameters

Parameter	Description/Related Command	Range
PMD	Navigation position mode (\$PASHS,PMD)	0 or 2
FIX	Altitude fix mode (\$PASHS,FIX)	0 or 1
PEM	Position elevation mask (\$PASHS,PEM)	0-90
PDP	PDOP mask (\$PASHS,PDP)	0-99
HDP	HDOP mask (\$PASHS,HDP)	0-99
DTM	Select datum (\$PASHS,DTM)	W84 or USR (user)
USE	Use satellite (\$PASHS,USE)	Y or N for each satellite
LTZ	Local timezone (\$PASHS,LTZ)	-13,59 to +13,59
SAV	Save parameters (\$PASHS,SAV)	Y (yes) or N (no)
CDS	Manual satellite selection (\$PASHS,CDS)	AUTO (applies to all channels) or else PRN or - for each channel
DIF_RTCM MOD	External RTCM differential mode (\$PASHS,RTC)	OFF/REM
PRT	Port receiving RTCM (\$PASHS,RTC)	А, В
AUT	Auto differential mode (\$PASHS,RTC,AUT)	Y or N
MAX	RTCM maximum age (\$PASHS,RTC,MAX)	0-3600
LAT	Latitude of antenna position (\$PASHS,POS)	0-90, north or south
LON	Longitude of antenna position (\$PASHS,POS)	0-180, east or west
ALT	Ellipsoidal height of antenna (\$PASHS,ALT)	0-99999.99
NMEA	NMEA message type for output	
PRTA	Output to port A: period (if enabled) or disabled (\$PASHS,NME)	Message enabled: 1-999 Message disabled: "_"
PER	NMEA message output period (\$PASHS,NME \$PASHS,NME,PER)	1-999.0
SPD	Indicates baud rate code for port A and port B (\$PASHS,SPD)	$\begin{array}{l} 2 = 1200 & 6 = 19200 \\ 4 = 4800 & 7 = 57600 \\ 5 = 9600 & 9 = 115200 \end{array}$

Parameter	Description/Related Command	Range
ANT	Antenna status This field is applicable only to B12.	Y = antenna detected O = no antenna connected S = short circuit in antenna connection
WAAS	SBAS reception enabled or disabled	Y = enabled, N = disabled

Table 6.10 PAR Parameters (continued)

PEM: Set Position Elevation Mask Angle

\$PASHS,PEM

Sets the elevation mask for position computation. The structure is

```
$PASHS,PEM,d
```

where d is 0 to 90 degrees. Default is 0 degrees. Satellites with elevation less than the elevation mask will not be used for position computation.

Example: Set position elevation mask to 15 degrees

\$PASHS,PEM,15 <Enter>

PDP: Set PDOP Mask for Position Computation

\$PASHS,PDP

Sets the Position Dilution of Precision (PDOP) mask. If the PDOP mask is exceeded, no navigation solution is reported. The PDOP mask is used to set accuracy limits on position outputs while operating in 3D mode. If PDOP is above the PDOP mask, no position is output. In fixed 2D mode, the PDOP mask is ignored. The command structure is

\$PASHS,PDP,d

where the parameter d is as defined in Table 6.11.

Table 6.11 PDP Parameters

Parameter	Description		Range
d	Dilution of precision	099	Default = 6

PMD: Set Navigation Position Mode

\$PASHS,PMD

This command changes the receiver mode to 2D or 3D. The structure is

\$PASHS,PMD,d

where d is as described in Table 6.12.

Table 6.12	PMD Parameters
-------------------	----------------

Parameter	Description	Range
d	2: 2D position is generated; altitude is held fixed4: 3D position is generated. Default is 4.	2 or 4

When PMD is set to 4, altitude is held fixed at the last computed value and does not use altitude entered by the ALT command.

POS: Set Antenna Position

\$PASHS,POS

Sets the position of the antenna. The command structure is

\$PASHS,POS,m1,c1,m2,c2,f1

where the parameters are as defined in Table 6.13.

This command is most often used to load a position to help receivers without battery backup to improve satellite acquisition times.

Field	Description	Range
m1	Latitude in degrees, decimal minutes (ddmm.mmmmmm)	0 to 90.0
c1	North (N) or South (S)	N or S
m2	Longitude in degrees, decimal minutes (dddmm.mmmmm)	0 to 90.0
c2	East (E) or West (W)	E or W
f1	Ellipsoidal height in meters	-99999.999 to +99999.999

Table 6.13 POS Parameters

Example: Set antenna position (latitude and longitude):

\$PASHS,POS,3722.291213,N,12159.799821,W,+15.25 <Enter

CAUTION

Entering an incorrect or less than the full position can cause a very long delay in acquiring satellites.

PPO: Point Positioning

\$PASHS,PPO,c[,f1]

This command enables/disables point positioning mode, where c is Y (enable) or N (disable) and [**f1**] is the horizontal velocity threshold in meters per second. Point positioning is an averaging algorithm that improves the stand-alone accuracy of a static point after about 4 hours. If PPO is enabled, when the horizontal velocity falls below the threshold, the A12 assumes that the receiver is stationary and begins averaging computed positions. The default for horizontal velocity threshold is 0.04 meters per second.

Example: Enable point positioning and set horizontal velocity threshold to 1.0 meter per second:

\$PASHS,PPO,Y,1.0 <Enter>

\$PASHQ,PPO

Query point positioning mode.

\$PASHR,PPO

Point positioning response message. The response is in the form:

\$PASHR,PPO,c,xx.xx

If c is Y (enabled), xx.xx indicates the value of the horizontal velocity threshold. If c is N (disabled), the field xx.xx is not displayed.

Example: PPO enabled, threshold set to 0.04 meters per second:

\$PASHR,PPO,Y,00.04*48

PRT: Serial Port Baud Rate Query

\$PASHQ,PRT

Displays the baud rate setting for the connected communication port. The structure is

\$PASHQ,PRT,x

where x is the optional output port. Note that to direct the response message to the current communication port, the x is not required.

Example: Query the baud rate of the current port:

\$PASHQ,PRT <Enter>

\$PASHR,PRT

The response to a serial port baud rate query is a message in the format:

\$PASHR,PRT,x,d*cc

where the parameters are as defined in Table 6.14.

Table 6.14 PRT Parameters

Field	Description	Range
х	Serial port	A or B
d	Baud rate code	2 = 1200 4 = 4800 5 = 9600 6 = 19200 8 = 57600 9 = 115200
*cc	Checksum	n/a

RID: Receiver ID Query

\$PASHQ,RID

Requests information about the receiver type, firmware, and available options. The structure is

\$PASHQ,RID,c

where c is the optional output port. If c is not specified, output goes to the current port.

Example: Query the current port for receiver identification

\$PASHQ,RID <Enter>

\$PASHR,RID

The return message is in the form:

\$PASHR,RID,EX,s1*cc

where the parameters are as defined in Table 6.15.

Table 6.15	\$PASHR,RID Structure
------------	-----------------------

Parameter	Description	Range
s1	Firmware version	4 characters

Example: Query: \$PASHQ,RID <Enter>

Response: \$PASHR,RID,EX,HM00

RST: Reset Receiver

\$PASHS,RST

Resets the receiver parameters to their default values. The RST command resets all parameters to their default values. For more information on default values, see Chapter 6.

Example: Reset receiver parameters

\$PASHS,RST <Enter>

SAV: Save User Parameters

\$PASHS,SAV

This command saves the current parameters of the system to battery-backed RAM. At the next power-on (e.g. hardware reset to exit the power saving mode) these saved parameters are restored. The structure is

\$PASHS,SAV,c

where the c parameter is Y (yes) or N (no). Y saves parameters now, and restores them after a hard reset. N returns parameters to default values the next time the receiver is powered on.

Once the \$PASHS,SAV,Y command is issued, all user parameters that were changed before power-down will be saved.

If the command \$PASHS,SAV,N is sent, the parameters of the system are always set to default values the next time the receiver is powered up.

The response is ACK/NAK.

SPD: Set Serial Port Speed

\$PASHS,SPD

Sets the baud rate of the receiver serial port. The structure is

\$PASH,SPD,c,d

where c is port A or B, and d is a number between 0 and 9 specifying the baud rate as listed in Table 6.16.

Code	Baud Rate	Code	Baud Rate
2	1200	6	19200
4	4800	8	57600
5	9600	9	115200

Table 6.16 SPD Parameters

Default is 4800 baud. To resume communication with the receiver after changing the baud rate using this command, be sure to change the baud rate of the command device.

Baud rate can not be set to 38,400 baud.

Example: Set port A to 19200 baud:

\$PASHS,SPD,A,6 <Enter>

UDD: Set User-Defined Datum Parameters

\$PASHS,UDD

Sets the user-defined datum parameters in the receiver memory. The structure is:

\$PASHS,UDD,d1,d2,f1,f2,f3,f4,f5,f6,f7,f8

where the parameters are as defined in Table 6.17.

Field	Description	Range	Units
d1	Geodetic datum ID. Always 0 for WGS 84.	0	n/a
d2	Semi-major axis	6300000.0- 6400000.0	meters
f1	Flattening in meters.	290.0 to 300.0	meters
f2	Translation in x direction	-1000.0 to +1000.0	meters
f3	Translation in y direction	-1000.0 to +1000.0	meters
f4	Translation in z direction	-1000.0 to +1000.0	meters
f5	Rotation in x axis + rotation is counterclockwise - rotation is clockwise rotation.	Always 0.0	radians
f6	Rotation in y axis	Always 0.0	radians
f7	Rotation in z axis	Always 0.0	radians
f8	Scale factor. Range -10.00 to +10.00.	Always 0.0	n/a

 Table 6.17
 UDD Structure

Fields f5 - f8 are reserved for future use and should always be set to zero.

Example: Set datum parameters:

\$PASHQ,UDD

The associated query command is \$PASHS,UDD,a where a is the optional output port and is not required to direct the response message to the current communication port.

Example: Query datum parameters to port A

\$PASHQ,UDD,A <Enter>

\$PASHR,UDD

The response is in the format.

\$PASHR,UDD,d1,d2,f1,f2,f3,f4,f5,f6,f7,f8*cc

where the fields are as defined in Table 6.17.

UID: Unit Identification

\$PASHS,UID

Sets the unit ID for the receiver. The structure is

\$PASHS,UID,s

where s is a 4-character unit identification number selected by the user. The UID set command also sets the unit identification number in the POS message.

Example: Set unit ID to A179:

\$PASHS,UID,A179<Enter>

\$PASHQ,UID

The associated query command is \$PASHQ,UID,c where c is the optional output port. This query returns the unit ID to the specified port. Port A is the only valid value for s.

\$PASHR,UID

The response is in the format

\$PASHR,UID,d*cc

where d is the unit identification number.

Example: **\$PASHR,UID,A179**

If no value has been entered using the \$PASHS,UID command, the default value (null) is reported in the \$PASHR,UID response and the \$PASHR,POS response.

USE: Set Satellites to Use

\$PASHS,USE

Selects satellites to track or not track. The structure is

\$PASHS,USE,d,c

where d is the PRN number of the satellite (range from 1 to 32) or ALL for all satellites, and c is Y (enable) or N (disable).

Example: Do not track satellite 14:

```
$PASHS,USE,14,N <Enter>
```

WAS: Wide-Area Augmentation

\$PASHS,WAS,ON/OFF

This command enables/disables the reception of SBAS (WAAS/EGNOS/ MSAS) signals. When turned off the receiver uses all 12 channels for tracking GPS satellites. The \$PASHQ,PAR query command can be used to view current WAAS settings. The \$PASHQ,RTC query command will display if WAAS corrections are applied to the solution.

ZDA: Upload Initial Real-time Clock Value

\$PASHS,ZDA

Allows data to be loaded into the real-time clock. This is used to aid acquisition for receivers that use no battery backup. In normal usage, this command should not be needed. However, it can be used if it is known that the clock data is significantly different, as it will speed up acquisition of the satellites. The command structure is

\$PASHS,ZDA,f1,d1,d2,d3,d4

where the parameters are as defined in Table 6.18.

Table 6.18 ZDA Parameters

Parameter	Description	Range
f1	UTC time (hhmmss.ss)	000000.00 through 235959.99
d1	UTC day (dd)	01 through 31
d2	UTC month (mm)	01 through 12
d3	UTC year (yyyy)	0000 through 9999
d4	UTC time zone offset. Must be null.	Null

The time zone offset field must be null. Any other value will generate a NAK response.

CAUTION

Entering the wrong time can cause long delays in acquiring satellites.

Example: Upload real-time clock values where the UTC time is 13:1530 on 1/ 15/98 and the local time is 8:15:30:

\$PASHS,ZDA,131530.00,01,15,1998 <Enter>

The NMEA message commands control all query and set commands related to NMEA format messages and miscellaneous messages in an Ashtech NMEA style format. All standard NMEA messages are a string of ASCII characters delimited by commas, in compliance with NMEA 0183 Standard Version 3.0. All non-standard messages are a string of ASCII characters delimited by commas in the Ashtech NMEA style format. Any combination of these messages can be output as long as the character I/O rate for the receiver is not exceeded (400 characters per second). The output interval is determined by the \$PASHS,NME,PER command or the specific \$PASHS,NME command, and can be set to any value between 1 and 999 seconds.

For each NMEA message type there is a set command, a query command and a response message. The set command is used to continuously output the NMEA response message at the specified period. The query outputs a NMEA response message only once.

Set Commands

The general structure of the NMEA set commands is

\$PASHS,NME,str,x,s,d <Enter>

where x is the serial port to which the response message should be sent, s is either ON or OFF, and d is an optional parameter to specify the reporting interval. ON enables the message and OFF disables the message. The **str** is a 3-character string that identifies the NMEA message to be output. If the reporting interval is not set, the output interval set by the \$PASHS,NME,PER command is used. The available strings are:

ALM, GGA, GLL, GSA, GSV, MSG, POS, RMC, SAT, VTG, ZDA

When a set command is sent correctly, the receiver sends a \$PASHR,ACK (command acknowledge) message. If the command is sent incorrectly or the syntax is wrong, the receiver sends a \$PASHS,NAK (command not acknowledged) message. Once acknowledged, the receiver will output the corresponding NMEA data message at the interval defined, unless a necessary condition for the message to be output is not present.

Port A is the only port that can be used to output NMEA messages.

To disable all NMEA messages, use the \$PASHS,NME,ALL command.

To see what NMEA messages have been enabled, use the \$PASHQ,PAR command.

Example: Enable GGA message on port A:

\$PASHS,NME,GGA,A,ON <Enter>

Example: Output enabled NMEA messages every 5 seconds:

\$PASHS,NME,PER,5 <Enter>

Query Commands

The general structure of the NMEA query commands is:

\$PASHQ,str,x, <Enter>

where str is one of the 3-character NMEA strings and \mathbf{x} is the serial port to where the response message will be sent (port A is the only valid port). The serial port field is optional. If a port is not included, the receiver sends the response to the current port. Unlike the set commands, the query command initiates a single response message.

Example: Query POS message and send the response to port A:

\$PASHQ,POS,A <Enter>

Example: Query GSA message and send the response to the current port:

\$PASHQ,GSA <Enter>

Table 6.19 summarizes the NMEA data message commands and responses. A detailed description of each NMEA command follows Table 6.19.

Command	Description	
\$PASHS,NME,ALL	Disable all NMEA messages	71
\$PASHS,NME,ALM	Enable/disable almanac data message	71
\$PASHQ,ALM	Query almanac data message	
\$GPALM	GPS almanac response message	71
\$PASHS,NME,GGA	Enable/disable position response message	74
\$PASHQ,GGA	Query position response message	74
\$GPGGA	Position response message	74
\$PASHS,NME,GLL	Enable/disable latitude/longitude message	77
\$PASHQ,GLL	Query latitude/longitude message	77
\$GPGLL	Latitude/longitude response message	77
\$PASHS,NME,GSA	Enable/disable satellites used message	79
\$PASHQ,GSA	Query satellite used message	79
\$GPGSA	Satellites used response message	79
\$PASHS,NME,GSV	Enable/disable satellites in view message	80
\$PASHQ,GSV	Query satellites in view message	81
\$GPGSV	Satellites-in-view response message	81
\$PASHS,NME,PER	Set send interval - all NMEA messages	
\$PASHS,NME,POS	Enable position message	83
\$PASHQ,POS	Position message query	83
\$PASHR,POS	Position response message	83
\$PASHS,NME,RMC	Enable recommended minimum course response message	86
\$PASHQ,RMC	Recommended minimum course query	86
\$GPRMC	Recommended minimum course response message	86
\$PASHS,NME,SAT	Enable/disable satellite status message	88
\$PASHQ,SAT	Satellite status query	89
\$PASHR,SAT	Satellite status response message	89
\$PASHS,NME,VTG	Enable/disable velocity/course message	91
\$PASHQ,VTG	Query velocity/course message	91
\$GPVTG	Course over ground and ground speed response message	91
\$PASHS,NME,ZDA	Enable/disable time and date message	93
\$PASHQ,ZDA	Query time and date message	93
\$GPZDA	Time and date response message	93

ALL: Disable All NMEA Messages

\$PASHS,NME,ALL

Turn off all enabled NMEA messages. The structure is:

\$PASHS,NME,ALL,x,OFF

where x is the specified serial port.

Example: Turn off all NMEA message currently sent out through port A:

\$PASHS,NME,ALL,A,OFF <Enter>

ALM: Almanac Message

\$PASHS,NME,ALM

Enable/disable the almanac message. The structure is:

\$PASHS,NME,ALM,x,s,d

where x is the receiver serial port, s is ON or OFF, and d is the optional reporting interval from 1 to 999 seconds.

Example: Enable ALM message on port A, reporting interval 5 seconds:

```
$PASHS,NME,ALM,A,ON,5 <Enter>
```

\$PASHQ,ALM

The associated query command is \$PASHQ,ALM,x, where x is the optional output port.

Example: Query almanac data message to receiver port A:

\$PASHQ,ALM,A <Enter>

\$GPALM

There is one response message for each satellite in the GPS constellation. The response to the set or query command is in the form

\$GPALM,d1,d2,d3,d4,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11*cc

where the parameters are as defined in Table 6.20.

Field	Description	Range
d1	Total number of messages	01 -32
d2	Number of this message	01 -32
d3	Satellite PRN number	01 - 32
d4	GPS week	4 digits
h1	SV health (In ASCII hex)	2 bytes
h2	Eccentricity (In ASCII hex)	4 bytes
h3	Almanac reference time (seconds. In ASCII hex)	2 bytes
h4	Inclination angle (semicircles. In ASCII hex)	4 bytes
h5	Rate of ascension (semicircles/sec. In ASCII hex)	4 bytes
h6	Root of semi-major axis (In ASCII hex)	6 bytes
h7	Argument of perigee (semicircle. In ASCII hex)	6 bytes
h8	Longitude of ascension mode (semicircle. In ASCII hex)	6 bytes
h9	Mean anomaly (semicircle. In ASCII hex)	6 bytes
h10	Clock parameter (seconds. In ASCII hex)	3 bytes
h11	Clock parameter (sec/sec. In ASCII hex)	3 bytes
*cc	Checksum	

Table 6.20 GPALM Response Message Structure

Example:

Query: \$PASHQ,ALM <Enter>

Typical response (Table 6.21):

\$GPALM,26,01,01,0899,00,1E8C,24,080B,FD49,A10D58,EB4562,BFEF85,227A5B,011,000*0B

0	P
C	С
F	5
	2
	R
	2
÷	¥
7	R
	ť
	л
2	Ķ
6	p
100	しつつ
den	しつつつ
no de or	LDCDCI
	LDCDDD
verioden.	
Joi Indens	LDCDODCD
Coportion of	LDCDODCD

ltem	Significance	
\$GPALM	Header	
26	Total number of messages	
01	Number of this message	
01	Satellite PRN number	
0899	GPS week number	
00	Satellite health	
1E8C	Eccentricity	
24	Almanac reference time	
080B	Inclination angle	
FD49	Rate of ascension	
A10D58	Root of semi-major axis	
EB4562	Argument of perigree	
BFEF85	Longitude of ascension mode	
227A5B	Mean anomaly	
011	Clock parameter	
000	Clock parameter	
*0B	checksum	

Table 6.21 Typical GPALM Response Mes	sage
---------------------------------------	------

GGA: GPS Position Message

\$PASHS,NME,GGA

This command enables/disables the GPS position message. The structure is

\$PASHS,NME,GGA,x,s,d

where x is port A or B, s is ON or OFF, and d is the optional reporting interval from 1 to 999 seconds. If no position is being computed, an empty message is output. Default is **disabled**.

Example: Enable GGA on port A:

\$PASHS,NME,GGA,A,ON <Enter>

\$PASHQ,GGA,x

The associated query message is \$PASHQ,GGA,x where x is optional the receiver port where the message will be output. If no position is being computed, an empty message is output.

Example: \$PASHQ,GGA <Enter>

\$GPGGA

The GGA response message is not output unless position is computed. The response message is in the form:

\$GPGGA,m1,m2,c1,m3,c2,d1,d2,f1,f2,M,f3,M,f4,d3*cc

Parameter	Description	Range
m1	Current UTC time of position fix in hours, minutes, and seconds (hhmmss.ss)	00-235959.99
m2	Latitude component of position in degrees and decimal minutes (ddmm.mmmmmm)	0-90
c1	Direction of latitude N= North, S= South	N or S
m3	Longitudinal component of position in degrees and decimal minutes (dddmm.mmmmmm)	0-180
c2	Direction of longitude E = East, W= West	E or W
d1	Position type: 0. Invalid or not available 1. Autonomous position 2. RTCM or SBAS differentially corrected	0, 1, 2
d2	Number of satellites used in position computation	0 - 12
f1	Horizontal dilution of precision (HDOP)	0 - 99.9
f2	Altitude in meters above the reference ellipsoid. For 2-D position computation, this item contains the user- entered altitude used to compute the position computation.	-30000.00 to 30000.00
М	Altitude units M = meters	Μ
f3	Geoidal separation in meters	±999.99
М	Geoidal separation units M = meters	М
d3	Age of differential corrections (seconds)	0-999 (RTCM mode)
d4	Base station ID (RTCM only)	0-1023
CC	checksum	

Table 6.22 GGA Message Structure

CAUTION

Fields may contain old or erroneous data. Use the position type field to determine validity.

Note: The latency between 1 PPS pulse and GGA message is approximately 1 second. Example: Query: \$PASHQ,GGA <Enter>

A typical GGA response is shown below and described in Table 6.23.

\$GPGGA,185333.00,3721.077440,N,12156.114654,W,2,08,1.0, 00036.81,M,-28.3,M,,*66

Field	Description
\$GPGGA	Header
185333.00	UTC time of position fix
3721.077440	Latitude (ddmm.mmmmmm)
N	North latitude
12156.114654	Longitude (dddmm.mmmmmm)
W	West longitude
2	RTCM or SBAS differential position
08	Number of satellites used in position
1.0	HDOP
00036.81	Altitude
М	Units of altitude (M = meters)
-28.3	Geoidal separation
М	Units of geoidal separation (M=meters)
,,	Null field
*66	checksum

Table 6.23 Typical GGA Message

GLL: Latitude/Longitude Message

\$PASHS,NME,GLL

This command enables/disables the latitude/longitude response message. The structure is

\$PASHS,NME,GLL,x,s,d

where x is port A, s is ON or OFF, and d is the optional reporting interval from 1 to 999 seconds. If no position is being computed, an empty message is output.

Example: Enable GLL message on port A:

\$PASHS,NME,GLL,A,ON <Enter>

\$PASHQ,GLL

The associated query message is PASHQ,GLL,x where x is the optional output serial port. If a port is not specified, the current port is used. If no position is being computed, an empty message is output.

Example: Display GLL message on current port:

\$PASHQ,GLL <Enter>

\$GPGLL

The response message is in the form shown below and defined in Table 6.24.

\$GPGLL,m1,c1,m2,c2,m3,c3*cc

Field	Description	Range
m1	Latitude in degrees, decimal minutes (ddmm.mmmm)	0 - 90°
c1	Direction of latitude N = North, S = South	N or S
m2	Longitude in degrees, decimal minutes (dddmm.mmmm)	0 - 180 [,]
c2	Direction of longitude W = West, E = East	W or E
m3	UTC time of position fix in hours, minutes, and seconds (hhmmss.ss)	00-235959.50
c3	Status, A: valid, V: invalid	A or V
c4	Mode indicator	A = autonomous D = differential E = estimated (dead reckoning) M = manual input S = simulator N = data not valid
*cc	Checksum	

Table 6.24 GLL Message Structure

Example: Query: \$PASHQ,GLL <Enter>

Typical response:

\$GPGLL,3721.0752,N,12156.1148,W,220949.00,A,A*75

Table 6.25 describes each item in a typical GLL response message.

Table 6.25	Typical	GLL Res	ponse	Message
-------------------	---------	---------	-------	---------

Field	Description
\$GPGLL	Header
3721.0752	Latitude
N	North latitude
12156.1148	Longitude
W	West longitude
220949.00,	UTC time of position fix
A	Status valid
A	Autonomous mode
*12	checksum

GSA: DOP and Active Satellite Messages

\$PASHS,NME,GSA

This command enables/disables the DOP and active satellite message to be sent out to serial port x. The structure is

\$PASHS,NME,GSA,x,s,d

where x is port A, s is ON or OFF, and d is the optional reporting interval from 1 to 999 seconds.

Example: Enable GSA message on port A:

\$PASHS,NME,GSA,A,ON <Enter>

\$PASHQ,GSA

The associated query message is \$PASHQ,GSA,x where x is the optional output serial port.

Example: Display GSA message on the current port:

\$PASHQ,GSA <Enter>

\$GPGSA

The response message is in the form shown below and defined inTable 6.26.

\$GPGSA,c1,d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,f1,f2,f3*cc

Field	Description	Range
c1	Mode: M: manual, A: automatic	M or A
d1	Mode: 1: fix not available 2: 2D 3: 3D	1 -3
d2 - d13	Satellites used in solution (null for unused channel)	1 -32
f1	PDOP	0 - 9.9
f2	HDOP	0 - 9.9
f3	VDOP	0 - 9.9
*cc	Checksum	

Table 6.26 GSA Message Structure

Example:

Query: \$PASHQ,GSA <Enter>

A typical response is shown below and described in Table 6.27.

\$GPGSA,M,3,,02,,04,27,26,07,,,,,,3.2,1.4,2.9*39

Item	Description
\$GPGSA	Header
М	Manual mode
3	3D mode
empty field	Satellite in channel 1
02	Satellite in channel 2
empty field	Satellite in channel 3
04	Satellite in channel 4
27	Satellite in channel 5
26	Satellite in channel 6
07	Satellite in channel 7
empty field	Satellite in channel 8
empty field	Satellite in channel 9
empty field	Satellite in channel 10
empty field	Satellite in channel 11
empty field	Satellite in channel 12
3.2	PDOP
1.4	HDOP
2.9	VDOP
*38	checksum

Table 6.27 Typical GSA Message

GSV: Satellites in View Message

\$PASHS,NME,GSV

This command enables/disables the satellites-in-view message on the serial port. The structure is

\$PASHS,NME,GSV,x,s,d

where x is port A, s is ON or OFF, and d is the optional reporting interval from

1 to 999 seconds.

Example: Output GSV message on port A:

\$PASHS,NME,GSV,A,ON <Enter>

\$PASHQ,GSV

The associated query message is \$PASHQ,GSV,x where x is the optional output serial port.

Example: Query the GSA message on port A:

```
$PASHQ,GSV,A <Enter>
```

\$GPGSV

The response message is in the form:

\$GPGSV,d1,d2,d3,n(d4,d5,d6,f1)*cc

where the fields are as described in Table 6.28.

Table 6.28	GSV	Message	Structure
-------------------	-----	---------	-----------

Field	Description	Range
d1	Total number of messages	1-3
d2	Message number	1-3
d3	Total number of satellites in view	1-12
d4	Satellite PRN	1-32 for GPS 33 - 64 for SBAS
d5	Elevation in degrees	0-90
d6	Azimuth in degrees	0-359
d7	SNR in dB-Hz	30 - 60
*cc	checksum	

Example:

Query: \$PASHQ,GSV <Enter>

Typical response:

\$GPGSV,2,1,08,16,23,293,50.3,19,63,050,52.1,28,11,038,51.5,29,14,145,50.9*78

where each item is as described in Table 6.29.

Table 6.29	Typical GSV	Message
14010 012/	. jpica. 001	mooodgo

Item	Description
2	Total number of messages 13
1	Message number 13
8	Number of SVs in view 112
16	PRN of first satellite 132
23	Elevation of first satellite 090
293	Azimuth of first satellite 0351
50.3	Signal-to-noise of first satellite
19	PRN of second satellite
63	Elevation of second satellite
050	Azimuth of second satellite
52.1	Signal-to-noise of second satellite
28	PRN of third satellite
11	Elevation of third satellite
038	Azimuth of third satellite
51.5	Signal-to-noise of third satellite
29	PRN of fourth satellite
14	Elevation of fourth satellite
145	Azimuth of fourth satellite
50.9	Signal-to-noise of fourth satellite
78	Message checksum in hexadecimal

PER: Set NMEA Send Interval

\$PASHS,NME,PER,d

Sets send interval of the NMEA response messages in seconds, where d is a value between 1 and 999.

Example: Output NMEA messages every 5 seconds:

\$PASHS,NME,PER,5 <Enter>

Longer intervals conserve power.

If a \$PASHS,NME,PER command is sent after individual NMEA message output periods were set, the previous individual message periods are superseded by the more recent NME,PER value.

POS: Position Message

\$PASHS,NME,POS

Enable/disable NMEA position response message on specified port. The structure is

\$PASHS,NME,POS,x,s,d

where x is port A, s is ON or OFF, and d is the optional reporting interval from 1 to 999 seconds. If no position is being computed, an empty message is output.

Example: Enable position message on port A:

\$PASHS,NME,POS,A,ON <Enter>

\$PASHQ,POS

The associated query command is \$PASHQ,POS,x where x is the optional output serial port.

Example: Send POS message to current port:

\$PASHQ,POS <Enter>

\$PASHR,POS

The response message is in the form:

\$PASHR,POS,d1,d2,m1,m2,c1,m3,c2,f1,f2,f3,f4,f5,f6,f7,f8,f9,s*cc

where the fields are as defined in Table 6.30.

Parameter	Description	Range
d1	Raw/differential position 0: Raw position is not differentially corrected 1: Position is differentially corrected with RTCM or SBAS	0, 1
d2	Number of SVs used in position fix	3 through 12

Parameter	Description	Range
m1	Current UTC time of position fix (hhmmss.ss)	00 through 235959.50
m2	Latitude component of position in degrees and decimal minutes (ddmm.mmmmmm)	0 through 90
c1	Latitude sector N = north S = south	N or S
m3	Longitude component of position in degrees and decimal minutes (ddmm.mmmmmm)	0 through 180
c2	Longitude sector E = east W = west	E or W
f1	Altitude in meters above WGS-84 reference ellipsoid. For 2-D position computation this item contains the altitude held fixed.	-30000.00 through 30000.00
f2	Unit ID or firmware version when no unit ID is input	0 to 4- character string
f3	True track/course over ground in degrees	0 through 359.9
f4	Speed over ground in kilometers per hour	0 through 999.9
f5	Vertical velocity in meters per second	-999.9 through +999.99
f6	PDOP - position dilution of precision	0 through 99.9
f7	HDOP - position dilution of precision	0 through 99.9
f8	PDOP - position dilution of precision	0 through 99.9
f9	TDOP - position dilution of precision	0 through 99.9
S	Firmware version ID	4-character string
*cc	checksum	

Table 6.30 POS Message Structure (continued)

Example:

Query: \$PASHQ,POS

Typical response:

\$PASHR,POS,1,08,185333.00,3721.077440,N,12156.114654,W,00008. 50,A111,015.0,000.0,-00.0,1.8,1.0,1.5,1.0,HM00*7C

Table 6.31 describes each item in a typical POS message.

ltem	Description
\$PASHR,POS	Header
0	Raw position, not differentially corrected
06	Number of SVs used in position fix
185333.00	UTC time of position fix
3722.385158	Latitude
N	North latitude
12156.114654	Longitude
W	West longitude
00008.50	Altitude above ellipsoid (meters)
A111	unit ID
015.0	Course over ground (degrees)
000.0	Speed over ground (km/hr)
-00.0	Vertical velocity (m/sec)
1.8	PDOP
1.0	HDOP
1.5	VDOP
1.0	TDOP
HM00	Firmware version ID
*7C	checksum

 Table 6.31
 Typical POS Message

RMC: Recommended Minimum Course

\$PASHS,NME,RMC

Enables or disables NMEA recommended minimum course on specified port. The command structure is

\$PASHS,NME,RMC,c,s,d <Enter>

where c is port A, s is ON or OFF, and d is the optional reporting interval from 1 to 999 seconds. If no position is being computed, an empty message is output.

Example: Enable RMC message on port A at the PER period:

\$PASHS,NME,RMC,A,ON <Enter>

Example: Enable RMC message on port A at 2-second period:

\$PASHS,NME,RMC,A,ON,2 <Enter>

\$PASHQ,RMC

The corresponding query command is \$PASHQ,RMC,x where x is the optional output serial port. If no position is being computed, an empty message is output.

Example: Send RMC message to port A:

```
$PASHQ,RMC,A <Enter>
```

\$GPRMC

The RMC response message is in the form:

\$GPRMC,f1,c2,f3,c4,f5,c6,f7,f8,s9,f10,c11,c12*cc

where the parameters are as defined in Table 6.32.

Field	Description	Range
f1	UTC time of the GGA position fix associated with this sentence (hhmmss.ss)	000000.00235959.00
c2	Status	A = data valid V = navigation receiver warning
f3	Latitude (ddmm.mmmm)	0000.00008959.99999
c4	Latitude direction	N = North S = South
f5	Longitude (dddmm.mmmm)	00000.000017959.9999
c6	Longitude direction	E = East W = West
f7	Speed over ground, knots	000.0999.9
f8	Course over ground, degrees true	000.0359.9
s9	Date, mmddyy	010100123199
f10	Magnetic variation, degrees	0.0099.99
c11	Direction of variation Easterly variation (E) subtracts from true course. Westerly variation (W) adds to true course.	E = East W = West
c12	Mode indicator	A = autonomous D = differential E = Estimated (dead reckoning) M = manual input S = simulator N = data not valid
*CC	Hexadecimal checksum computed by exclusive- ORing all bytes in the message between, but not including, the \$ and the *. The result is *hh, where h is a hex character 0 - 9 or A-F.	0 through 9 or A through F

Table 6.32 GPRMC Parameters

A typical response message is shown below and described in Table 6.33.

\$GPRMC,215734.00,A,3721.0760,N,12156.1138,W,00.0,015.0, 040902,15,E,D*39

Item	Significance
\$GPRMC	Header
215734.00	UTC time of GGA position fix
A	Status valid
3721.0760	Latitude
N	North
12156.1138	Longitude
W	West
00.0	Speed over ground, knots
015.0	Course over ground, degrees true
040902	Date
15	Magnetic variation, degrees
E	East (subtracts from true course)
D	Differential
*39	Checksum

 Table 6.33 Typical RMC Response Message

SAT: Satellite Status Query

\$PASHS,NME,SAT

This command enables/disables the satellite status message to the specified port. The command structure is

\$PASHS,NME,SAT,x,s,d

where x is port A, s is ON or OFF, and d is the optional reporting interval from 1 to 999 seconds.

Example: Enable SAT message on port A:

\$PASHS,NME,SAT,A,ON <Enter>

\$PASHQ,SAT

The associated query message is \$PASHQ,SAT,x where x is the optional output serial port.

Example: Send SAT message to port A

\$PASHQ,SAT,A <Enter>

\$PASHR,SAT

The response message is in the form:

\$PASHR,SAT,d1,n(d2,d3,d4,f1,c)*cc

where the parameters are as defined in Table 6.34.

Table 6.34 SAT Message Structure

Field	Description	Range
d1	Number of SVs locked	1 to 2
d2	SV PRN number,	1 to 32 for GPS 33 to 64 for SBAS
d3	SV azimuth angle in degrees	0 to 359
d4	SV elevation angle in degrees	0 to 90
f1	SV signal/noise ratio in dB Hz	30.0 to 60.0
С	SV used in position computation U = used, - = not used	U or -
*cc	checksum	

Example:

Query: \$PASHQ,SAT

Typical response:

\$PASHR,SAT,04,03,103,56,50.5,U,23,225,61,52.4,U,16,045,02,51.4, U,40,160,46,53.6,U*6E

Table 6.35 describes each item in a typical SAT response message.

Item	Significance	
\$PASHR,SAT	Header	
04	Number of SVs locked	
03	PRN number of the first SV	
103	Azimuth of the first SV in degrees	
56	Elevation of the first SV in degrees	
50.5	Signal strength of the first SV	
U	SV used in position computation	
23	PRN number of the second SV	
225	Azimuth of the second SV in degrees	
61	Elevation of the second SV in degrees	
52.4	Signal strength of the second SV	
U	SV used in position computation	
16	PRN number of the third SV	
045	Azimuth of the third SV in degrees	
02	Elevation of the third SV in degrees	
51.4	Signal Strength of the third SV	
U	SV used in position computation	
40	PRN number of fourth SV	
160	Azimuth of fourth SV in degrees	
46	Elevation of fourth SV in degrees	
53.6	Signal strength of fourth SV	
U	SV used in position computation	
6E	Message checksum in hexadecimal	

Table 6.35 Typical SAT Message

VTG: Velocity/Course Message

\$PASHS,NME,VTG

This command enables/disables the velocity/course message. The structure is

\$PASHS7,NME,VTG,x,s,d

where x is port A, s is ON or OFF, and d is the (optional) reporting interval from 1 to 999 seconds. If no position is being computed, an empty message is output. Default is **disabled**.

Example: Enable VTG message on port A, reporting interval 5 seconds:

\$PASHS,NME,VTG,A,ON,5 <Enter>

\$PASHQ,VTG

The associated query message is \$PASHQ,VTG,x where x is the optional output serial port. If no position is being computed, an empty message is output.

Example: Send VTG message to port A:

\$PASHQ,VTG,A <Enter>

\$GPVTG

The response message is in the form:

\$GPVTG,f1,T,f2,M,f3,N,f4,K,c5*cc

where the fields are as described in Table 6.36.

Field	Description	Range
f1	COG (Course Over Ground) true north	0 - 359.99
Т	COG orientation (T = true north)	Т
f2	COG magnetic north	0 - 359.99
М	COG orientation (M = magnetic north)	М
f3	SOG (Speed Over Ground) and N for knots	0 - 999.99
Ν	SOG units (N = knots)	N
f4	SOG (Speed Over Ground)	0 - 999.99
к	SOG units (K = Km/hr)	к
c5	Mode indicator	A = autonomous D = differential E = estimated (dead reckoning) M = manual input S = simulator N = data not valid
*cc	checksum	

Table 6.36 VTG Message Structure

Example:

Query: \$PASHQ,VTG <Enter>

Typical response:

\$GPVTG,004.58,T,349.17,M,000.87,N,001.61,K,A*46

Table 6.37 describes each item in a typical VTG message.
Table 6.37	Typical	VTG	Message
14010 0.07	rypicai		moodage

Item	Significance
\$GPVTG	Header
004.58	Course over ground (COG) oriented to true north
Т	True north orientation
349.17	Course over ground (COG) oriented to magnetic north
М	Magnetic north orientation
000.87	Speed over ground (SOG) in knots
Ν	SOG units (N=knots)
001.61	Speed over ground (SOG) in km/hr
к	SOG units (K=km/hr)
A	Autonomous mode
*46	checksum

ZDA: Time and Date

\$PASHS,NME,ZDA

Enable/disable NMEA time and date message. The command structure is

\$PASHS,NME,ZDA,x,s,d <Enter>

where x is port A, s is ON or OFF, and d is the optional reporting interval from 1 to 999 seconds.

Example: Enable ZDA message on port A at 10-second interval:

```
$PASHS,NME,ZDA,A,10 <Enter>
```

\$PASHQ,ZDA

The associated query command is \$PASHQ,ZDA,x where x is the optional output serial port.

Example: Send ZDA message to port A:

\$PASHQ,ZDA,A <Enter>

\$GPZDA

The NMEA time and date response message is in the form:

\$GPZDA,f1,d1,d2,d3,d4,d5*cc

Table 6.38 defines each field of the \$GPZDA message structure.

Field	Description	Range
f1	UTC time	000000.00 through 235959.99
d1	Current day	01 through 31
d2	Current month	01 through 12
d3	Current year	0000 through 9999
d4	Local zone offset from UTC time (hours)	-13 through 13
d5	Local zone offset from UTC time (minutes)	0 through 59
*cc	Checksum	

Table 6.38	GPZDA	Time	and	Date	Message	Structure
------------	-------	------	-----	------	---------	-----------

Example:

Query: \$PASHQ,ZDA,A <Enter>

Typical response: \$GPZDA,132123.00,10,03,1996,07,00*ss

Table 6.39 describes each item in a typical \$GPZDA response message.

Table 6.39 Typical GPZDA Response Message

Item	Description		
123123.00	UTC time		
10	Current day		
03	Current month		
1996	Current year		
07	Local time zone offset (hours portion)*		
00	Local time zone offset (minutes portion)*		
*22	Checksum		
*Offset will be 00 unless offset is input using the LTZ command.			

RTCM Commands and Responses

The RTCM commands allow you to control and monitor RTCM real-time differential operations. For a more detailed discussion of RTCM differential, refer to the RTCM differential section of the Operations chapter.

Set Commands

All RTCM commands except one are **set** commands. Using the **set** commands, you can modify and enable a variety of differential parameters. If the **set** command is sent correctly, the receiver responds with the \$PASHR,ACK acknowledgment. If a parameter is out of range or the syntax is incorrect, the receiver responds with a \$PASHR,NAK to indicate that the command was not accepted.

Query Commands

There is only one **query** command: **\$PASHQ,RTC**. Use this command to monitor the parameters and status of RTCM differential operations. The **query** command has an optional port field. If the query is sent with the port field empty, the response is sent to the current port. For example, the query

\$PASHQ,RTC <Enter>

outputs an RTCM status message to the current port, while the command:

\$PASHQ,RTC,A <Enter>

outputs an RTCM status message to port A. Table 6.40 summarizes the RTCM commands.

Command	Description	Page			
	GENERAL PARAMETERS				
\$PASHS,RTC,OFF	Disables differential mode	97			
PASHQ,RTC Requests differential mode parameters and status		96			
REMOTE PARAMETERS					
\$PASHS,RTC,AUT	Turns auto differential mode on or off	97			
\$PASHS,RTC,MAX	Sets maximum age of RTCM differential corrections	97			
\$PASHS,RTC,REM	Sets receiver to operate as differential remote station	98			

Table 6.40	RTCM Command	s
-------------------	--------------	---

RTC: RTCM Status Query

\$PASHQ,RTC

Queries the RTCM differential status. The structure is

\$PASHQ,RTC,x

where x is the optional output port (A is the only valid value for port).

The return message is a free-form response format. A typical response message is shown below.

```
STATUS:
SYNC:*TYPE:00, STID:0000, STHE:00,
AGE:0.00,QA: ,OFFSET: 0,WAAS:Y
SETUP:
MODE:OFF, PORT:B, AUT:Y,MAX:0015
```

where the parameters are as defined in Table 6.41.

Table 6.41 RTC Parameters

Parameter	Description	Range			
	STATUS				
SYNC	Sync to last received RTCM message between receiver (remote) and base stations.	* = in sync			
TYPE	RTCM message type being received.	1, 3, 9, 16			
STID	Station ID received from the base station.	01023			
STHE	Station health received from the base station.	07			
AGE	Age of the received messages (seconds)	0999			
QA	Communication quality factor between base and remote (not implemented)	0100%			
OFFSET	Number of bits from beginning of RTCM byte (in case of bit slippage)				
WAAS	Indicates if WAAS corrections can be used in DGPS solution	Y = yes N = no			
SETUP					
MODE	RTCM mode	REM, OFF			
PORT	Communication port	В			
AUT	Automatic differential mode	Y, N			

Table 6.41 RTC Parameters (cont	inued)
---------------------------------	--------

Parameter	Description	Range
MAX	Maximum age, in seconds, required for a message to be used	03599
MSG	Displays message up to 90 characters from base station (not implemented)	

AUT: Set Auto Differential Mode

\$PASHS,RTC,AUT

Turns auto differential mode on or off. The structure is

\$PASHS,RTC,AUT,c

where c is Y (or ON) or N (or OFF). When in auto-diff mode, the receiver generates uncorrected positions automatically if differential corrections are older than the maximum age, or are not available. Default is Y (ON).

Example: Turn auto differential mode off

\$PASHS,RTC,AUT,N <Enter>

MAX: Set RTCM Differential Data Age

\$PASHS,RTC,MAX

Set the maximum age in seconds of an RTCM differential correction above which it will not be used. The structure is

\$PASHS,RTC,MAX,d

where d is any number between 1 and 1199. Default is 15.

Example: Set maximum age to 30 seconds:

\$PASHS,RTC,MAX,30 <Enter>

OFF: Disable RTCM

\$PASHS,RTC,OFF

Disables base or remote differential mode.

Example: Turn RTCM off:

\$PASHS,RTC,OFF <ENTER>

REM: Enable Remote RTCM

\$PASHS,RTC,REM

Sets receiver to operate as an RTCM differential remote station. The structure is

\$PASHS,RTC,REM,B

If WAAS corrections are available, they will be used automatically. However, RTCM corrections through the serial port take priority over WAAS, i.e., if both corrections are available, RTCM corrections will be used in the position solution.

Example: Set receiver as differential remote using external corrections:

\$PASHS,RTC,REM,B <Enter>

Reference

Search Strategy & Position Algorithms

Satellite Selection

The search manager tracks the 12 satellites with the highest elevation. Only healthy satellites are tracked; unhealthy satellites are ignored. If fewer than 12 satellites are available above the horizon, the remaining channels are drawn from a list of all GPS satellites. The list is maintained in ROM.

During cold start conditions, when satellite visibility information cannot be computed, the search manager selects satellites by drawing in turn from the ROM list. This satellite selection maximizes the probability of quickly selecting a visible satellite.

When satellite visibility is available for only a subset of the satellites (e.g. for several minutes after cold start), the search manager selects the 12 satellites with the highest elevation with known visibility. If fewer than 12 satellites are known to be visible, the remaining channels are assigned to satellites with unknown visibility by drawing from the ROM list used for cold start.

False Position Condition

If the receiver has been powered on for five minutes and no position has been computed, one channel of the receiver is dedicated to sequentially searching for satellites that are calculated to be below the horizon. If any of these satellites are locked the search manager resets and performs a cold start.

Once a position is obtained, the search manager ceases searching for satellites below the horizon. The strategy can be re-invoked only by cycling power or resetting the receiver.

The intent here is to ensure that the receiver will successfully acquire even if the last known position is invalid or if the real-time clock time is incorrect.

CAUTION

If the A12 has a valid almanac and ephemeris, but has retained a last known position more than 1000 km from its actual location, the receiver should be reset using the \$PASHS,INI command to minimize start time. If not reset, this condition may cause a long delay in the start time of the receiver.

Search Strategy

During normal operation conditions, the search strategy dedicates one channel to each satellite in the satellite assignment.

During startup and reacquisition conditions the search strategy dedicates seven or 12 channels to a single satellite for searching. Satellites are searched for sequentially, cycling among the highest five satellites in the satellite selection. This strategy improves acquisition time when the clock uncertainty is very large.

Position Modes

The A12 may operate in either of two modes to return a position computation. The \$PASHS,PMD command, or equivalent, is used to select the mode.

3D Mode

3D mode is the standard mode of operation. In 3D mode, four satellites are required to be locked for the initial position fix. After the initial fix, however, there is no requirement for any particular number of satellites to be locked. Rather, A12 continues to operate by using whatever satellites are locked, propagating its internal solution and reporting the predicted position until PDOP exceeds PDOP mask. Latitude, longitude, altitude, and time are computed in this mode.

2D Mode

In 2D mode as set by the user, the A12 calculates latitude, longitude, and time, and holds altitude constant. The value to use for altitude is determined by the \$PASHS,ALT and \$PASHS,FIX commands.

When FIX is set to 1, the 2D altitude is always the altitude entered via the \$PASHS,ALT command. However, when FIX is set to 0, the altitude is the most-recently-determined altitude, which may be either that entered via the \$PASHS,ALT command, or the altitude from the last computed 3D determination that passed the PDOP test.

The A12 requires at least three satellites to be locked for the initial 2D position fix. After the initial fix, however, there is no requirement for any particular number of satellites to be locked. Rather, A12 continues to operate by making use of whatever satellites are locked, propagating its internal solution and reporting the predicted position until HDOP exceeds HDOP mask.

Missile Technology Control Regime (MTCR)

Whenever the A12 has calculated a position and has determined that either the A12 altitude is greater than 60,000 feet (18,288 m), or the velocity is greater than 1,000 knots (514 m/sec), then the MTCR limits are considered to be exceeded. In either case, the A12 produces no valid position information.

Other Operational Characteristics

Conversions

The A12 can perform the following conversions:

- Convert latitude and longitude rates to course over ground (COG) and speed over ground (SOG). In case of speeds below 1 m/s, the last known course is held.
- Convert course over ground from true bearing to magnetic bearing. This is computed from a table containing global magnetic variations.
- Convert altitude from height above WGS-84 ellipsoid to mean sea level, using a table containing a geoid undulation model

Self Test

Built In Test (BIT) algorithms determine the general health of the A12 memory and verify the integrity of information saved in backup RAM. Invalid data are not used.

Watchdog Timer

The A12 utilizes a watchdog timer to enable it to recover from firmware errors. In normal operation, the timer is regularly reset. If an irreversible firmware error occurs, the timer will expire and the receiver automatically restarts.

System Parameter Settings

The A12 can save all current parameter settings using a \$PASHS,SAV command such that during a power interruption these settings will be utilized when power is restored. A \$PASHS,RST command can also be used to revert to default settings.

\$PASHS,SAV,Y command is not required to save position, ephemeris, almanac, etc. This information is automatically saved by the receiver during power off and is used for faster acquisition when the unit is turned on.

Long-Term Operation

The A12 is capable of long-term non-stop operation. None of the following events will affect operation or cause any change in performance during continuous operation for one week:

- Week rollover (weekly)
- Leap second change²

Datum Support

The standard datum supported is WGS-84. Other datums (user-defined) can be loaded using the \$PASHS,UDD command described on page 64.

Detailed Performance Characteristics

Accuracy

A12 accuracy is defined in terms of horizontal 95% and circular error probable (CEP) as listed in Table 7.1. All measurements assume SA is off.

Mode	A12	Test Conditions
Autonomous CEP (50%)	3 m	Autonomous guidelines:
Autonomous horizontal 95%	5 m	Precision antenna
Autonomous vertical 95%	7.5 m	10° elevation angle
Autonomous speed	0.2 km/h	
Autonomous directional at 40 km/h	0.2 degree	
DGPS using SBAS Horizontal CEP (50%)	1 m	SBAS guidelines
DGPS using SBAS Horizontal CEP (95%)	3 m	Precision antenna
DGPS using SBAS Vertical CEP (95%)	4.5 m	10° elevation angle
DGPS CEP (50%)	0.8 m	DGPS guidelines
DGPS horizontal 95%	1.5 m	Precision antenna
DGPS vertical (95%)	2.25 m	10° elevation angle

Table 7.1: Accuracy Specifications (Low multipath environment)

Fable 7.1: Accuracy Specificatior	IS (Low multipath environment)	(continued)
--	--------------------------------	-------------

Mode	A12	Test Conditions
DGPS speed	0.1 km/h	Test horz. position per note 4 below
DGPS directional at 40 km/h	0.1°	Test speed and direction per note 3 below

ACCURACY NOTES:

1. Horizontal 95% accuracy definition: The circle, centered at the known antenna position, that contains 95% of the points in a horizontal scatter plot.

2. CEP accuracy definition: The circle, centered at the known antenna position, that contains 50% of the points in a horizontal scatter plot. This is the same as typical accuracy, since half the positions are more accurate than this, half are less accurate.

3. Speed and Direction: Measured with simulator, without S/A, speed 40 km/h.

4. Measure DGPS accuracy using a Thales Navigation G12 reference station with Marine/Survey antenna on a short baseline (<10km), with a rate of differential corrections set at once per second at 300bps. Disregard wireless communication latency by utilizing hardwire connection.

5. Accuracy measurement assumes the antenna has a clear view of the sky and uses the highest satellites above a 10° elevation, with HDOP ≤ 4 , PDOP ≤ 6 .

TTFF (Time To First Fix)

TTFF (Time To First Fix) is defined as the time from when the receiver is turned on to the time that three or more satellites are tracked and a valid position is calculated. Performance is as specified in Table 7.2.

Mode	Typical Example	Approximate Position (w/in several 100 km)	Valid Almanac	Valid Ephemeris (2-4 hours old)	Valid Time (w/in 10 min)	Average Time in Seconds (50th percentile)
Cold start - TTFF	Freshout of the box	no	no	no	no	150

|--|

Mode	Typical Example	Approximate Position (w/in several 100 km)	Valid Almanac	Valid Ephemeris (2-4 hours old)	Valid Time (w/in 10 min)	Average Time in Seconds (50th percentile)
Warm start TTFF	Receiver off over- night	yes	yes	no	yes	45
Hot start- TTFF	Receiver off at lunch	yes	yes	yes	yes	10

TTFF NOTES:

For a receiver that starts with an estimated position which is wildly incorrect (the estimated position is the diametrically-opposite point on the earth) the TTFF time is approximately 25 minutes in the warm start and hot start cases.

Four satellites (3D) are required for cold start in the default configuration. The receiver may be commanded to start in a 3-satellite mode (2D).

CAUTION

If the A12 has a valid almanac and ephemeris, but has retained a last known position more than 1000 km from its actual location, the receiver should be reset using the \$PASHS,INI command to minimize start time. If not reset, this condition may cause a long delay in the start time of the receiver.

Reacquisition Times

Reacquisition is defined as the time between signal blockage from all satellites and the time that three or more satellites are tracked and a valid position is calculated. Performance is as specified in Table 7.3.

Mode	Description	Typical Example	Average (50th Percentile)
Reacquisition (<20 sec blockage)	Temporary blockage	Under over-pass	1 to 2 sec
Reacquisition (<180 sec blockage)	Temporary blockage	In short tunnel	3 to 5 sec

Table 7.3: Reacquisition Ti	imes
-----------------------------	------

Troubleshooting

Listed below are some tests and fixes for common problems that you may encounter when installing and configuring the A12 GPS OEM board.

TTL-to-RS-232 Conversion

If you are using a TTL-to-RS-232 converter for your A12 OEM board, verify that the level conversion is correct (i.e., 5 volts to 12 volts), as described in "Communication Port Setup" on page 14.

Port Setup

Verify the port default setup of 8 bits, no parity, 1 stop bit, 4800 baud as described in "Communication Port Setup" on page 14. This setup must be consistent with the communication parameters used by your computer or other processing device.

RTS/CTS

RTS/CTS are connected together in the A12 Evaluator, but not in the A12 OEM board. If you do not have the A12 Evaluator, your will have to manage the RTS/ CTS required by your computer or other processing device, as described in "RTS/ CTS Considerations" on page 15.

Factory Defaults

To clear unknown parameters, you can reset to factory defaults using the \$PASHS,RST or \$PASHS,INI command, as described on page 62.

Saving Parameters

If you are losing your user-defined parameters during a power cycle, be sure to save them prior to the power cycle by using the \$PASHS,SAV,Y command, as described on page 63. Also, for parameters to be saved through a power cycle, there must be appropriate battery backup power provided at pin 3 (V_BACK).

Logging Data

Thales Navigation does not recommend logging data with unique PC application programs other than Thales Navigation's Evaluate program.

Using Third Party Software

When using third party software like Hyperterminal, ensure CR/LF outgoing is enabled. All set commands and queries end with CR/LF.

A

Global Product Support

If you have any problems or require further assistance, you can contact Technical Support by telephone, email, or Internet.

Please refer to the documentation before contacting Technical Support. Many common problems are identified within the documentation and suggestions are offered for solving them.

Thales Navigation Professional Products Technical Support Santa Clara CA USA

800 Number: 800 229 2400, Option 1 Direct dial: +1 408 615 3980 Switchboard: +1 408 615 5100 FAX line: +1 408 615 5200 e-mail: support@thalesnavigation.com Internet: http://products.thalesnavigation.com

Nantes, France:

Direct dial: +33 2 28 09 39 34 Switchboard: +33 2 28 09 38 00 e-mail: technical@thalesnavigation.com

South America:

Tel: +56 2 234 56 43 FAX: +56 2 234 56 47

When contacting Technical Support, please have the following information:

Receiver serial number

Software version number

Software key serial number, if applicable

Firmware version number

A clear, concise description of the problem.

Also visit the Thales Navigation ftp site at ftp://ftp.thalesnavigation.com for updates to current firmware, software, product release notes, PDF versions of manuals, and FAQs.

Solutions for Common Problems

- Check cables and power supplies. Many hardware problems are related to these simple problems.
- If the problem seems to be with your computer, re-boot it to clear RAM.
- If you are experiencing receiver problems, reset the receiver as documented in the set commands section of this manual. Reset clears receiver memory and resets operating parameters to factory defaults.
- Verify that the batteries are charged.
- Verify that the antenna view of the sky is unobstructed by trees, buildings, or other canopy.
- Click on Evaluate "Create Support Ticket" and e-mail the file to Technical Support.

Corporate Web Page

You can obtain data sheets, GPS information, application notes, and a variety of useful information from Ashtech's Internet web page at:

http://www.thalesnavigation.com

Repair Centers

In addition to repair centers in California and France, your authorized distributor can assist you with your service needs.

Thales Navigation 469 El Camino Real Santa Clara California 95050-4300 Voice: +1 408 615 3980 or 800 229 2400, Option 2 FAX: +1 408 615 5200

e-mail: rmaprocessing@thalesnavigation.com

Glossary

Aerotriangulation (phototriangulation)

A complex process vital to aerial **Photogrammetry** that involves extending vertical and/or horizontal control so that the measurements of angles and/or distances on overlapping photographs are related to a spatial solution using the perspective principles of the photographs.

Aerotriangulation consists of mathematically extending the vectors/angles of the triangular pattern of known reference points on or near the designated photo-block terrain upward through a rectangle representing the area of the photo-block (as seen by the camera's optical center) in such a way that the treepoint terrain triangle and the camera's eye three-point triangle (within the photographic frame) are analogous.

AFT

After

AGE

Age of Data

ALM

See Almanac

Almanac

A set of parameters used by a GPS receiver to predict the approximate locations of all GPS satellites and the expected satellite clock offsets. Each GPS satellite contains and transmits the almanac data for all GPS satellites (See Ellipsoid).

ALT

Altitude

Ambiguity

The initial bias in a carrier-phase observation of an arbitrary number of carrier cycles; the uncertainty of the number of carrier cycles a receiver is attempting to count. If wavelength is known, the distance to a satellite can be computed once the number of cycles is established via carrier-phase processing.

AMI

ATM Management Interface

ANT

Antenna

Antenna

A variety of GPS antennas ranging from simpler microstrip devices to complex choke ring antennas that mitigate the effects of multipath scattering.

Anti-Spoofing (AS)

The process of encrypting the P-Code modulation sequence so the code cannot be replicated by hostile forces. When encrypted, the P-Code is referred to as the Y-Code.

ASCII

American Standard Code for Information Interchange. A set of characters (letters, numbers, symbols) used to display and transfer digital data in human-readable format.

Atomic clock

A clock whose frequency is maintained using electromagnetic waves that are emitted or absorbed in the transition of atomic particles between energy states. The frequency of an atomic transition is very precise, resulting in very stable clocks. A cesium clock has an error of about one second in one million years. For redundancy purposes, GPS satellites carry multiple atomic clocks. GPS satellites have used rubidium clocks as well as cesium clocks. The GPS Master Control Station uses cesium clocks and a hydrogen master clock.

Argument of latitude

The sum of the true anomaly and the argument of perigee.

Argument of perigee

The angle or arc from the ascending node to the closest approach of the orbiting body to the focus or perigee, as measured at the focus of an elliptical orbit, in the orbital plane in the direction of motion of the orbiting body.

Ascending node

The point at which an object's orbit crosses the reference plane (e.g., equatorial plane) from south to north.

Bandwidth

A measure of the information-carrying capacity of a signal expressed as the width of the spectrum of that signal (frequency domain representation) in Hertz.

Baseline

The measured distance between two receivers or two antennas

Bias

See Integer bias terms

BIN

Binary Index (file)

C/A

Coarse Acquisition

C/A code

A sequence of 1023 bits (0 or 1) that repeats every millisecond. Each satellite broadcasts a unique 1023-bit sequence that allows a receiver to distinguish between various satellites. The C/A-Code modulates only the L1 carrier frequency on GPS satellites. GPS satellite navigation signals are broadcast on two L-band frequencies, L1 is 1575.42 MHz, and L2 is 1227.6 MHz.

Carrier phase

The phase of either the L1 or L2 carrier of a GPS signal, measured by a receiver while locked-on to the signal (also known as integrated Doppler).

CEP

Circular error probable. That vertical circle through the elevated celestial pole, It also passes through the other celestial pole, the astronomical zenith, and the nadir..

Channel

Refers to the hardware in a receiver that allows the receiver to detect, lock on, and continuously track the signal from a single satellite. The more receiver channels available, the greater number of satellite signals a receiver can simultaneously lock-on and track.

Chip

The length of time to transmit either a zero or a one in a binary pulse code..

Chip rate

Number of chips per second (e.g., C/A code = 1.023 MHz).

Circular Error Probable

The radius of a circle, centered at the true location, within which 50% of position solutions fall. CEP is used for horizontal accuracy..

Clock offset

The difference in time between GPS time and a satellite clock or a sensor clock (less accurate). radios use the same frequency both with each one having a separate and unique code. GPS uses CDMA techniques with Gold's code from their unique cross-correlation properties.

COG

Course Over Ground

Constellation

Refers to the collection of orbiting GPS satellites. The GPS constellation consists of 24 satellites in 12-hour circular orbits at an altitude of 20,200 kilometers. In the nominal constellation, four satellites are spaced in each of six orbital planes. The constellation was selected to provoke a very high probability of satellite coverage even in the event of satellite outages..

CTD

Course To Destination

Cycle slip

A loss of count of carrier cycles as they are being measured by a GPS receiver. Loss of signal, ionospheric interference and other forms of interference cause cycle slips to occur.

DGPS

Differential Global Positioning System

Differential GPS (DGPS)

A technique whereby data from a receiver at a known location is used to correct the data from a receiver at an unknown location. Differential corrections can be applied in realtime or by post-processing. Since most of the errors in GPS are common to users in a wide area, the DGPS-corrected solution is significantly more accurate than a normal SPS solution.

Differential processing

GPS measurements can be differenced between receivers, satellites, and epochs. Although many combinations are possible, the present convention for differential processing of GPS measurements is to take differences between receivers (single difference), then between satellites (double difference), then between measurement epochs (triple difference). A single-difference measurement between receivers is the instantaneous difference in phase of the signal from the same satellite, measured by two receivers simultaneously. A double-difference measurement is the difference for a chosen reference satellite. A triple-difference measurement is the difference between a double difference at one epoch and the same double difference at the previous epoch.

Differential (relative) positioning

Determination of relative coordinates of two or more receivers which are simultaneously tracking the same satellites. Dynamic differential positioning is a real-time calibration technique achieved by sending corrections to the roving user from one or more reference stations. Static differential GPS involves determining baseline vectors between pairs of receivers.

Dilution of Precision (DOP)

A measure of the receiver-satellite(s) geometry. DOP relates the statistical accuracy of the GPS measurements to the statistical accuracy of the solution. Geometric Dilution of Precision (GDOP) is composed of Time Dilution of Precision (TDOP); and Position Dilution of Precision (PDOP), which are composed of Horizontal Dilution of Precision (HDOP); and Vertical Dilution of Precision (VDOP).

DOP

Dilution of Precision

Doppler aiding

The use of Doppler carrier-phase measurements to smooth code-phase position measurements.

Doppler shift

An apparent change in signal frequency which

occurs as the transmitter and receiver move toward or away from one another.

Double difference

The arithmetic differencing of carrier phases measured simultaneously by a pair of receivers tracking the same pair of satellites. Single differences are obtained by each receiver from each satellite; these differences are then differenced in turn, which essentially deletes all satellite and receiver clock errors.

DTD

Distance to Destination

Dynamic positioning

Determination of a timed series of sets of coordinates for a moving receiver, each set of coordinates being determined from a single data sample, and usually computed in realtime.

Earth Centered, Earth Fixed (ECEF)

A cartesian coordinate system centered at the earth's center of mass. The Z-axis is aligned with the earth's mean spin axis. The X-axis is aligned with the zero meridian. The Y-axis is 90 degrees west of the X-axis, forming a right-handed coordinate system. ellipse to its focus to the semimajor axis. e = (1 - b2/a2)-1/2 where a and b are the semimajor and semiminor axes of the ellipse.

EDOP

Elevation Dilution of Precision

ELEV

Elevation

Elevation

Height above mean sea level. Vertical distance above the geoid.

Elevation mask

An adjustable feature of GPS receivers that specifies that a satellite must be at least a

specified number of degrees above the horizon before the signals from the satellite are to be used. Satellites at low elevation angles (five degrees or less) have lower signal strengths and are more prone to loss of lock thus causing noisy solutions.

Elevation mask angle

That angle below which it is not advisable to track satellites. Normally set to 15 degrees to avoid interference problems caused by buildings and trees and multipath reflections.

Ellipsoid

In geodesy, unless otherwise specified, a mathematical figure formed by revolving an ellipse about its minor axis. It is often used interchangeably with spheroid. Two quantities define an ellipsoid; the length of the semimajor axis, a, and the flattening, f =-(a - b)/a, where b is the length of the semiminor axis. Prolate and triaxial ellipsoids are invariably described as such.

Ellipsoid height

The measure of vertical distance above the ellipsoid. Not the same as elevation above sea level. GPS receiver output position fix height in the WGS-84 datum.

Ephemeris

A set of parameters used by a GPS receiver to predict the location of a single GPS satellite and its clock behavior. Each GPS satellite contains and transmits ephemeris data for its own orbit and clock. Ephemeris data is more accurate than the almanac data but is applicable over a short time frame (four to six hours). Ephemeris data is transmitted by the satellite every 30 seconds.

Epoch

Measurement interval or data frequency, as in making observations every 15 seconds. Loading data using 30-second epochs means loading every other measurement.

FCC

Federal Communications Commission

Firmware

The coded instructions relating to receiver function, and (sometimes) data processing algorithms, embedded as integral portions of the internal circuitry.

Flattening

f = (a- b)/a = 1 - (1 - e2) 1/2 where a = semimajor axis b = semiminor axis e = Eccentricity

GDOP

Geometric Dilution of Precision. The relationship between errors in user position and time and in satellite range. $GDOP^2 = PDOP^2 + TDOP^2$. See Position Dilution of Precision.

Geodetic datum (horizontal datum)

A specifically oriented ellipsoid typically defined by eight parameters which establish its dimensions, define its center with respect to Earth's center of mass and specify its orientation in relation to the Earth's average spin axis and Greenwich reference meridian.

Geodetic height (ellipsoidal height)

The height of a point above an ellipsoidal surface. The difference between a point's geodetic height and its orthometric height equals the geoidal height.

Geoid

The equipotential surface of the Earth's gravity field which best fits mean sea level. Geoids currently in use are GEOID84 and GEOID90.

Geoidal height (geoidal separation;

undulation)

The height of a point on the geoid above the ellipsoid measured along a perpendicular to the ellipsoid.

GLL

Position Latitude/Longitude

GMST

Greenwich Mean Sidereal Time

GPS DIFF

Differential

GPS ICD-200

The GPS Interface Control Document is a government document that contains the full technical description of the interface between the satellites and the user. GPS receiver must comply with this specification if it is to receive and process GPS signals properly.

GPS week

GPS time started at Saturday/Sunday midnight, January 6, 1980. The GPS week is the number of whole weeks since GPS time zero.

Greenwich mean time (GMT)

See universal time. In this text, they are often used interchangeably.

HDOP

Horizontal Dilution of Precision. See Dilution of Precision.

нι

Height of Instrument

HTDOP

Horizontal/Time Dilution of Precision. See Dilution of Precision.

ID

Identification or Integrated Doppler

Integer bias terms

The receiver counts the carrier waves from the satellite, as they pass the antenna, to a high

degree of accuracy. However, it has no information of the number of waves to the satellite at the time it started counting. This unknown number of wavelengths between the satellite and the antenna is the integer bias term.

Integrated Doppler

A measurement of Doppler shift frequency or phase over time.

lonosphere

Refers to the layers of ionized air in the atmosphere extending from 70 kilometers to 700 kilometers and higher. Depending on frequency, the ionosphere can either block radio signals completely or change the propagation speed. GPS signals penetrate the ionosphere but are delayed. The ionospheric delays can be predicted using models, though with relatively poor accuracy, or measured using two receivers.

Ionospheric delay

A wave propagating through the ionosphere [which is a nonhomogeneous (in space and time) and dispersive medium] experiences delay. Phase delay depends on electron content and affects carrier signals. Group delay depends on dispersion in the ionosphere as well, and affects signal modulation (codes). The phase and group delay are of the same magnitude but opposite sign.

Julian date

The number of days that have elapsed since 1 January 4713 B.C. in the Julian calendar. GPS time zero is defined to be midnight UTC, Saturday/Sunday, 6 January 1980 at Greenwich. The Julian date for GPS time zero is 2,444,244.5.

Kalman filter

A numerical method used to track a time-

varying signal in the presence of noise. If the signal can be characterized by some number of parameters that vary slowly with time, then Kalman filtering can be used to tell how incoming raw measurements should be processed to best estimate those parameters as a function of time.

Kinematic surveying

A method which initially solves wavelength ambiguities and retains the resulting measurements by maintaining a lock on a specific number of satellites throughout the entire surveying period.

L1

The primary L-band signal radiated by each NAVSTAR satellite at 1575.42 MHz. The LI beacon is modulated with the C/A and P codes, and with the NAV message. L2 is centered at 1227.60 MHz and is modulated with the P code and the NAV message.

L1 & L2

Designations of the two basic carrier frequencies transmitted by GPS satellites that contain the navigation signals. L1 is 1,575.42 MHz and L2 is 1,227.60 MHz.

Lane

The area (or volume) enclosed by adjacent lines (or surfaces) of zero phase of either the carrier beat phase signal or of the difference between two carrier beat phase signals. On the earth's surface a line of zero phase is the focus of all points for which the observed value has an exact integer value for the complete instantaneous phase measurement. In three dimensions, this locus becomes a surface.

L-band

A nominal portion of the microwave electromagnetic spectrum ranging from 390 MHz to 1.55 GHz.

LNA

Low-Noise Amplifier

MSG

RTCM Message

MSL Mean Sea Level

Multichannel receiver

A receiver containing many independent channels. Such a receiver offers highest SNR because each channel tracks one satellite continuously.

Multipath

The reception of a signal both along a direct path and along one or more reflected paths. The resulting signal results in an incorrect pseudorange measurement. The classical example of multipath is the "ghosting" that appears on television when an airplane passes overhead.

Multipath error

A positioning error resulting from interference between radio waves which have traveled between the transmitter and the receiver by two paths of different electrical lengths.

Multiplexing

A technique used in some GPS receivers to sequence the signals of two or more satellites through a single hardware channel. Multiplexing allows a receiver to track more satellites than the number of hardware channels at the cost of lower effective signal strength.

Multiplexing channel

A receiver channel which is sequenced through several satellite signals (each from a specific satellite at a specific frequency) at a rate which is synchronous with the satellite message bit-rate (50 bits per second, or 20 milliseconds per bit). Thus, one complete sequence is completed in a multiple of 20 milliseconds.

NMEA

National Marine Electronics Association

NV

Non-Volatile. Usually refers to a memory device that retains data after power is removed.

Outage

The occurrence in time and space of a GPS dilution of precision value exceeding a specified maximum.

P-Code

Precise or protected code which is bi-phase shift modulated on both the L1 and L2 carrier frequencies. P-code has a 10.23MHz bit rate and, as implemented in GPS, a period of 267 days. Each satellite has a unique one-week Pcode segment that is used to distinguish the satellite from all other GPS satellites.

Position Dilution of Precision (PDOP)

A unitless figure of merit expressing the relationship between the error in user position and the error in satellite position. Geometrically, POP is proportional to 1 divided by the volume of the pyramid formed by lines running from the receiver to four satellites observed. Values considered 'good' for positioning are small, say 3. Values greater than 7 are considered poor. Thus, small PDOP is associated with widely separated satellites. PDOP is related to horizontal and vertical DOP by PDOP² = HDOP² + VDOP². Small PDOP is important in positioning, but much less so in surveying.

Photogrammetry

An aerial remote sensing technique whose latest innovations employ a high-resolution aerial camera with forward motion compensation and uses GPS technology for pilot guidance over the designated photo block(s). Photogrammetry forms the baseline of many Geographic Information Systems (GIS) and Land Information System (LIS) studies.

Point positioning

A geographic position produced from one receiver in a stand-alone mode. At best, position accuracy obtained from a standalone receiver is 15-25 meters, depending on the geometry of the satellites.

POS

Position

Post-processing

The reduction and processing of GPS data after the data was collected in the field. Postprocessing is usually accomplished on a computer in an office environment where appropriate software is employed to achieve optimum position solutions.

Precise Positioning System (PPS)

The more accurate GPS capability that is restricted to authorized, typically military, users.

Pseudo-kinematic surveying

A variation of the kinematic method where roughly five-minute site occupations are repeated at a minimum of once each hour.

Pseudorandom noise (PRN)

The P(Y) and C/A codes are pseudo-random noise sequences which modulate the navigation signals. The modulation appears to be random noise but is, in fact, predictable hence the term "pseudo" random. Use of this technique allows the use of a single frequency by all GPS satellites and also permits the satellites to broadcast a low power signal.

Pseudorange

The measured distance between the GPS receiver antenna and the GPS satellite. The pseudorange is approximately the geometric range biased by the offset of the receiver clock from the satellite clock. The receiver actually measures a time difference which is related to distance (range) by the speed of propagation.

PZ-90

The proper designators for the GLONASS reference system. Sometimes referred to as E-90 or PE-90.

RAM

Random-Access Memory. A memory device whose data can be accessed at random, as approved to sequential access. RAM data is lost when power is removal.

Range rate

The rate of change of range between the satellite and receiver. The range to a satellite changes due to satellite and observer motions. Range rate is determined by measuring the doppler shift of the satellite beacon carrier.

RDOP

Relative Dilution of Precision. See Dilution of Precision.

Reconstructed carrier phase

1. The difference between the phase of the incoming Doppler-shifted GPS carrier and the phase of a nominally constant reference frequency generated in the receiver. For static positioning, the reconstructed carrier phase is sampled at epochs determined by a clock in the receiver. The reconstructed carrier phase changes according to the continuously integrated Doppler shift of the incoming signal biased by the integral of the frequency offset between the satellite and receiver reference

oscillators.

- or -

2. The reconstructed carrier phase can be related to the satellite-to-receiver range, once the initial range (or phase ambiguity) has been determined. A change in the satellite-to-receiver range of one wavelength of the GPS carrier (19 cm for L1) will result in a one-cycle change in the phase of the reconstructed carrier.

Real-time

Refers to immediate, GPS data collection, processing and position determination (usually) within a receiver's firmware after the fact with a computer in an office environment.

Real-time kinematic (RTK)

A DGPS process where carrier-phase corrections are transmitted in real-time from a reference receiver at a known location to one or more remote rover receiver(s).

Real-Time Z

Ashtech's proprietary technique that includes Carrier Phase Differential (CPD) processing. Real-Time Z features "on-the-fly" (OTF) ranging data acquisition and differential processing.

Reference Network

A series of monuments or reference points with accurately measured vectors/distances that is used as a reference basis for cadastral and other types of survey.

Reference station

A point (site) where crustal stability, or tidal current constants, have been determined through accurate observations, and which is then used as a standard for the comparison of simultaneous observations at one or more subordinate stations. Certain of these are known as Continuous Operating Reference Stations (CORS), and transmit reference data on a 24-hour basis.

Relative positioning

The process of determining the relative difference in position between two points with greater precision than that to which the position of a single point can be determined. Here, a receiver (antenna) is placed over each point and measurements are made by observing the same satellite at the same time. This technique allows cancellation (during computations) of all errors which are common to both observers, such as satellite clock errors, propagation delays, etc. See also Translocation and Differential Navigation.

RF

Radio Frequency

RFI

Radio Frequency Interference

RINEX

The <u>Receiver-IN</u>dependent <u>EX</u>change format for GPS data, which includes provisions for pseudorange, carrier-phase, and Doppler observations.

RMS

Root Mean Square. A statistical measure of the scatter of computed positions about a "best fit" position solution. RMS can be applied to any random variable.

RTCM

Radio Technical Commission for Maritime Services P.O. Box 19087 Washington, DC. 20036-9087

RTCM SC-104 Format

A standard format used in the transmission of differential corrections.

Site Editor or Standard Error

Selective Availability (SA)

The process whereby DOD dithers the satellite clock and/or broadcasts erroneous orbital ephemeris data to create a pseudorange error

Spherical Error Probable (SEP)

A statistical measure of precision defined as the 50th percentile value of the threedimensional position error statistics. Thus, half of the results are within a 3D SEP value.

Sidereal day

Time between two successive upper transits of the vernal equinox.

Sidereal time

The hour angle of the vernal equinox. Taking the mean equinox as the reference yields true or apparent Sidereal Time. Neither Solar nor Sidereal Time are constant, since angular velocity varies due to fluctuations caused by the Earth's polar moment of inertia as exerted through tidal deformation and other mass transports.

Single difference

The arithmetic differencing of carrier phases simultaneously measured by a pair of receivers tracking the same satellite (between receivers and satellite), or by a single receiver tracking two satellites (between-satellite and receivers); the former essentially deletes all satellite clock errors, while the latter essentially deletes all receiver errors.

Spherical Error Probable (SEP)

A navigational measure of accuracy equaling the radius of a sphere, centered on the true location, inside which 50% of the computed solutions lie.

Spoofing

The process of replicating the GPS code in such a way that the user computes incorrect position solutions.

Standard Positioning Service (SPS)

Uses the C/A code to provide a minimum level of dynamic- or static-positioning capability. The accuracy of this service is set at a level consistent with national security.

Standard Positioning System

The less accurate GPS capability which is available to all.

Static observations

A GPS survey technique requiring roughly one hour of observation, with two or more receivers observing simultaneously, and results in high accuracies and vector measurements.

Static positioning

Positioning applications in which the positions of static or near static points are determined.

sv

Satellite Vehicle, Satellite Visibility or Space Vehicle.

Switching channel

A receiver channel which is sequenced through a number of satellite signals (each from a specific satellite and at a specific frequency) at a rate which is slower than, and asynchronous with, the message data rate.

TDOP

Time Dilution of Precision. See Dilution of Precision.

тоw

Time of week, in seconds, from midnight Sunday UTC.

Translocation

A version of relative positioning which makes use of a known position, such as a USGS

survey mark, to aid in the accurate positioning of a desired point. Here, the position of the mark, determined using GPS, is compared with the accepted value. The three-dimensional differences are then used in the calculations for the second point.

Triple difference

The arithmetic difference of sequential, double-differenced carrier-phase observations that are free of integer ambiguities, and therefore useful for determining initial, approximate coordinates of a site in relative GPS positioning, and for detecting cycle slips in carrier-phase data.

Tropospheric correction.

The correction applied to the measurement to account for tropospheric delay. This value is obtained from the modified Hopfield model.

True anomaly

The angular distance, measured in the orbital plane from the earth's center (occupied focus) from the perigee to the current location of the satellite (orbital body).

Universal Time Coordinated (UTC)

Time as maintained by the U.S. Naval Observatory. Because of variations in the Earth's rotation, UTC is sometimes adjusted by an integer second. The accumulation of these adjustments compared to GPS time, which runs continuously, has resulted in an 11 second offset between GPS time and UTC at the start of 1996. After accounting for leap seconds and using adjustments contained in the navigation message, GPS time can be related to UTC within 20 nanoseconds or better.

User Range Accuracy (URA)

The contribution to the range-measurement error from an individual error source (apparent clock and ephemeris prediction accuracies), converted into range units, assuming that the error source is uncorrelated with all other error sources. Values less than 10 are preferred.

UT

Universal Time

UTM

Universal Transverse Mercator Map Projection. A special case of the Transverse Mercator projection. Abbreviated as the UTM Grid, it consists of 60 north-south zones, each 6 degrees wide in longitude.

VDC

Volts Direct Current

VDOP

Vertical Dilution of Precision. See Dilution of Precision and Position Dilution of Precision.

WGS

World Geodetic System

World Geodetic System 1984 (WGS-84)

A set of U.S. Defense Mapping Agency parameters for determining global geometric and physical geodetic relationships. Parameters include a geocentric reference ellipsoid; a coordinate system; and a gravity field model. GPS satellite orbital information in the navigation message is referenced to WGS-84.

World Geodetic System (1972)

The mathematical reference ellipsoid previously used by GPS, having a semimajor axis of 6378.135 km and a flattening of 1/298.26.

WP

Waypoint

Y-Code

The designation for the end result of P-Code during Anti-Spoofing (AS) activation by DoD.

Y-code tracking, civilian

Signal squaring (now obsolete) multiplies the signal by itself, thus deleting the carrier's code information and making distance measurement (ranging) impossible. Carrier phase measurements can still be accomplished, although doubling the carrier frequency halves the wavelength.

INDEX

Symbols

\$GPALM	71
\$GPGGA	74
\$GPGLL	77
\$GPGSA	79
\$GPGSV	81
\$GPRMC	86
\$GPVTG	91
\$GPZDA	93, 94
\$PASHQ,ALM	71
\$PASHQ,GGA	74
\$PASHQ,GLL	77
\$PASHQ,GSA	79
\$PASHQ,GSV	81
\$PASHQ,PAR20,	56, 66
\$PASHQ,POS	83
\$PASHQ,PRT	61
\$PASHQ,RID	62
\$PASHQ,RMC	86
\$PASHQ,RTC	66, 96
\$PASHQ,SAT	89
\$PASHQ,UDD	65
\$PASHQ,UID	65
\$PASHQ,VTG	91
\$PASHQ,ZDA	93
\$PASHR,POS	83
\$PASHR,PRT	61
\$PASHR,RID	62
\$PASHR,SAT	89
\$PASHR,UDD	65
\$PASHR,UID	65
\$PASHS,ALM	52
\$PASHS,ALT	53, 57
\$PASHS,DTM	53, 57
\$PASHS,FIX	54
\$PASHS,FIX)	57
\$PASHS,HDP	54, 57
\$PASHS,INI4, 20, 5	5, 105
\$PASHS,LTZ	56, 57
\$PASHS,NME	57
\$PASHS,NME,ALL	71
\$PASHS,NME,ALM	71

\$PASHS,NME,GGA	
\$PASHS,NME,GLL	
\$PASHS,NME,GSA	
\$PASHS,NME,GSV	
\$PASHS,NME,PER	
\$PASHS,NME,POS	
\$PASHS,NME,RMC	
\$PASHS,NME,SAT	
\$PASHS,NME,VTG	
\$PASHS,NME,ZDA	
\$PASHS,PDP	
\$PASHS,PEM	
\$PASHS,PMD	
\$PASHS,POS	
\$PASHS,RST	
\$PASHS,RTC	
\$PASHS,RTC,AUT	
\$PASHS,RTC,MAX	
\$PASHS,RTC,OFF	
\$PASHS,RTC,REM	
\$PASHS,SAV	
\$PASHS,SPD	
\$PASHS,UDD	
\$PASHS,UID	
\$PASHS,USE	
\$PASHS,ZDA	
Nu	umerics
1 PPS	3 25 /3
1575 42 MHz	
2D	19 58 59 100
3D	19 22 58 59 100
00	A
	A
accuracy	
accurate position from p	previous survey23
ACK	
acquisition	
age of data	
age of received messag	Jes96
aimanac	
ALI	

altitude hold	
altitute fix mode	
antenna position	
ASCII	
Ashtech G12 reference station	
Ashtech proprietary	
AUT	25, 57, 97
automatic differential mode	96
autonomous	1, 92, 102

В

backup RAM	101
base station ID	75
baseline	
battery backup	
battery-backed memory	
battery-backed RAM	63
baud rate	43
baud rates between devices	19
BBU	42
BIT	101
bit slippage	96

С

cable loss	13
CEP	
character delimiter	17
checksum	17
clock data	66
clock uncertainty	100
CMOS	14
Coarse/Acquisition (C/A)	1
code-phase	1
COG	101
cold start	
command not accepted	95
communication link	24
communication setup	16
communications software	11
corrections	23
current parameters	63, 101

D

data logging	18
datum ID	64
dead reckoning	92
default	63
default parameter settings	20

default parameters	14
default settings	101
default transmit/receive protocol	18
delay in start time	20
delay start	4
DGPS	1, 21
DGPS CEP	102
differential correction	25
differential GPS	24
differential GPS correction	25
differential operation	17, 23, 95
differential positioning	23
difficult environments	1
dilution of precision	54
disable differential mode	97
DOP	54, 79
DTM	53, 57
Е	

EGNOS	66
ellipsoidal height	53
ephemeris	
error	24
error-in-position	24
ESD	42
establishing communication	11
estimated position	104
Evaluate software	
evaluation environment	
F	

firmware	17, 101
FIX22, 5	4, 57, 100
flattening	64
free-form Ashtech proprietary format	
full duplex	2
•	

G

general parameters	
geoid undulation	
geometry of SVs	
GGA	74
GLL	77
global magnetic variations	
GMT	
GPS second	
GPS time	
GPS week	

ground plane	13
GSA	79
GSV	81
н	

half duplex	2
hard reset	63
HDOP	
HDP	
horizontal scatter plot	103
hot start	19, 104

I

19, 20, 22, 25
17
101
15
9
1
52
99
24

L

L1 (1575.42 Mhz)	1
last altitude	22
last altitude computed	54
last computed 3D determination	100
last computed value	59
last known position	20
last position fix	42
last valid position	25
L-band antenna	1
leap second change	
list of all GPS satellites	99
LNA	13, 41
low-noise amplifier	2
LTZ	56, 57

Μ

magnetic bearing	101
magnetic north	92, 93
MAX	.25, 57, 97
maximum age	25, 97
mean anomaly	73
memory	101
Missile Technology Control Regime	101
Molex	12
most recent almanac	19
most recent antenna altitude	54
most-recently-determined altitude	100
MSAS	66
multipath	13
-	

Ν

navigation position mode	57
NME	
NMEA	.1, 22, 52
NMEA 0183	
NMEA 0183 standard	17
NMEA 0183 Standards Version 2.1	23
NMEA 0183 V2.1	2
NMEA outputs	22
NMEA ZDA	
no previously known position	19
non-standard messages	23
not-acknowledged	
null fields	
•	

0

OFF	.97
output impedance	8

Ρ

PAR	20, 42, 56, 66
parameters and status	95
parity	
parity protocol	19
PDOP	
PDOP mask	
PDP	
PEM	
PER	
PMD	
polarization	8
POS	
position accuracy	

position data	19
, positioning	23
power backup	14
power conservation	
power interrupt	101
predicted position	
PRT	16, 61

Q

quality factor		96
	R	

RAM	.42
range correction	.23
range errors	.24
rate of differential corrections	103
reacquisition 100, 103,	104
real time	.23
real-time clock	99
real-time differential	.95
real-time differential positioning	.23
real-time position	1
receiver mode	.59
receiver noise	.24
receiver parameters	.56
REM	.98
remote station	.23
reset receiver	.99
reset to default	.20
response to command	.16
restart time	.14
RF shield	.42
RID	.62
RMC	.86
ROM list of satellites	.99
rotation	.64
RS-232	30
RST	105
RTC	96
RTC,OFF	.97
RTCM corrections	.98
RTCM differential status	.96
RTCM message type	.96
RTCM messages	.24
RTCM mode	.96
RTCM SC-104 format	.23
RTCM SC-104 Version 2.22,	, 24

RTCM status message	
S	43
S/A	103
SA SA	
SA (selective availability)	24 24
SAT	
satellite blockage	3
satellite geometry	
satellite status	88
satellite visibility	99
satellites-in-view	80
SAV	57 63
SBAS	58 66
search manager	
search strategy	100
selecting a visible satellite	99
sequential search	99
serial interface connector	30
serial port configuration	18
setup parameters	42
simulator	92
six-of-eight format	25
SMA	30
SMB	12 41
software development	29
SOG	92 101
sources of error	23.24
SPD	43 57 63
speed acquisition	52
SPS	2
standard datum	
start time	
stop bit	
SV clock estimation	
SV health	
SV orbit estimation	
syntax incorrect	95
system setup	17
T	
time to first fix	
time until satellites are tracked	
timezone offset	
total position error	
translation	64

troposphere	24
true bearing	101
true north	92
true range	23
TTFF	103

U

UDD	
UID	65
uncorrected raw position	25
USE	57, 66
user-defined datum	
UTC time	94

۷

valid position	
VDOP	
velocity/course	91
VTG	

W

WAAS	
warm start	
watchdog timer	
WGS 84	64
WGS-84	
	Z
70 4	0 ((()))

ZDA26, 66, 93