MP1763B
Pulse Pattern Generator
Operation Manual
(GPIB Programming)

Fourth Edition

\
To ensure that the MP1763B Pulse Pattern Genera-

tor is used safely, read the safety information in the
MP1763B Pulse Pattern Generator Operation Manu-
al first. Keep this manual with the Pulse Pattern
Generator.

Measurement Solutions

ANRITSU CORPORATION

Document No.: M-W1024AE-4.0

MP1763B Pulse Pattern Generator
Operation Manual
(GPIB Programming)

August 1995 (First Edition)
April 2002 (Fourth Edition)

Copyright © 1995-2002, ANRITSU CORPORATION.

All rights reserved. No part of this manual may be reproduced without the prior written permission of the
publisher.

The contents of this manual may be changed without prior notice.

Printed in Japan

‘HP Basic’ is a registered trademark of the Hewlett-Packard Corporation.
‘HP’ is aregistered trademark of the Hewlett-Packard Company.
‘MS-DOS’ is a registered trademark of the Microsoft Corporation.

‘Quick Basic’ is a registered trademark of the Microsoft Corporation.

iv

(Blank)

Composition of MP1763B Operation Manuals

The MP1763B Pulse Pattern Generator operation manuals are composed of the following two documents.
Use them properly according to the usage purpose.

Composition
of
MP1763B

Operation Manuals

Function and Operation Part

Function and Operation Part

GPIB Programming :

These outline the MP1763B, and describes the preparations
before use, the panels, specifications, performances, functions,
and operation procedures.

The MP1763B GPIB conforms to IEEE488.2. Remote control by
GPIB is explained based on IEEE488.2. An application program
example using the ANRITSU PACKET V series of personal
computers, HP9000 series HP-BASIC and Quick Basic of
Microsoft Corporation are also provided.

II

(Blank)

SECTION

SECTION

SECTION

SECTION

SECTION

TABLE OF CONTENTS

1 GENERAL ...ttt i e e a e n e e
1.1 Development of the GPIB Standard
1.2 MP1763BGPIBFunctionscc.ts.
1.2.1 Overviews of GPIB functions
1.2.2 Examples of system makeup using

GPIB ... e e
2 SPECIFICATIONScoiiiiiiiiiieernrnnenannnnns
21 InterfaceFunctionso,
2.2 Device MessagelListccciiiiiiiiina,
2.2.1 |EEE 488.2 common commands and

MP1763B supported commands
2,22 Statusmessagesiiiiiiiiiiaaianaaa
2.2.3 MP1763B devicemessagesc.ceeuinnnnnnns
3 CONNECTING THE BUS AND SETTINGS ADDRESS
3.1 Connecting Devices with GPIBCables
3.2 Procedure for Setting the Address and Checking it ..
3.21 Addresssettingciiiiiiiiiian
3.2.2 Connection with MP1764A during

the tracking operation
4 INITIALSETTINGScoiiiiiiiiiiirinnnnnarnnnnns
4.1 Buslnitialization by the IFC Statement
4.2 Initialization for Message Exchange by DCL and

SDCBusCommandsccovvvvvvnnnnnrennnns

4.3 Device Initialization by the %*RST Command
4.4 Device Initialization by the INICommand
4.5 Device StatusatPower-oncvnunnn
5 LISTENERINPUTFORMATccoiiiiiiiiiiirinnnns
5.1 Listener Input Program Message Syntax Notation ...
5.1.1 Separators, terminators and spaces

beforeheaderscoiiiiriiiiiinnriennnns

1-3
1-4
1-4

1-4

1

SECTION

SECTION

5.1.2 Genaral format for
program command messages020nn.

5.1.3 Genaral format for querymessages
5.2 Functional Elements of Program Messages
5.2.1 <TERMINATED PROGRAM MESSAGE>
5.2.2 <PROGRAM MESSAGE TERMINATOR>
523 <whitespace> ittt i
524 <PROGRAMMESSAGE>cciuunnnnn.
5.25 <PROGRAM MESSAGE UNIT SEPARATOR>
5.2.6 <PROGRAM MESSAGEUNIT>

52.7 <COMMAND MESSAGE UNIT> and
<QUERY MESSAGEUNIT>00e

52.8 <COMMAND PROGRAM HEADER>
52.9 <QUERYPROGRAMHEADER>
5.2.10 <PROGRAM HEADER SEPARATOR>
5.2.11 <PROGRAM DATA SEPARATOR>
5.3 ProgramDataFormat00
5.3.1 <DECIMALNUMERICPROGRAM DATA>
5.3.2 <NON-DECIMAL NUMERIC PROGRAM DATA >

6 TALKEROUTPUTFORMATccviviiiiiiannenns

6.1 Syntax Differences Between Formats of
Listener Input and Talker Output

6.2 Functional Elements of Response Message
6.2.1 <TERMINATED RESPONSE MESSAGE>
6.2.2 <RESPONSE MESSAGE TERMINATOR>
6.2.3 <RESPONSE MESSAGE>cccivunnn
6.2.4 <RESPONSE MESSAGE UNIT SEPARATOR>
6.2.5 <RESPONSE MESSAGEUNIT>
6.2.6 2 <RESPONSE HEADER SEPARATOR>
6.2.7 <RESPONSE DATA SEPARATOR>
6.2.8 <RESPONSE HEADER>cccvvineennnn.
6.2.9 <RESPONSEDATA>ccvviinnnnnnnnnnens

7 COMMONCOMMANDScc it iiin s

7.1 Classification by Function of Common Commands
Supportedbythe MP1763Bccovnnunnn

7.2 The Classification of Commands Supported and
theReferencec.ciiiiiiiiiiiiinnnnnnnnns

SECTION

SECTION

SECTION

8 STATUS STRUCTURE e eeeeeaaeeaaaaas 8-1
8.1 IEEE 488.2 Standard Status Model 8-4
8.2 StatusByte(STB)Registerccvviinnnnnn.. 8-6
8.2.1 ESBand MAV summary messages 8-6
8.2.2 Device-dependent summary messages 8-7
8.2.3 Reading and clearing the STB register 8-8
83 EnablingSRQ ... e 8-10
8.4 Standard Event StatusRegister 8-11
8.4.1 Bitdefinition, 8-11
8.42 Queryerrordetailscoiiiiiiiiiinn, 8-13
8.4.3 Reading, writing to and clearing the standard

eventstatusregistercciiiiiiinn, 8-14
8.4.4 Reading, writing to and clearing the standard

event status enableregister 8-14
8.5 Extended Event StatusRegister 8-15
8.5.1 Bitdefinition of END event status register 8-16
8.5.2 Bitdefinition of ERROR event status register 8-18
8.5.3 Reading, writing to and clearing the extended

eventstatusregister 8-20
8.5.4 Reading, writing to and clearing the extended

event status enableregister 8-20
86 QueueModelciiiiiiiiii i i 8-21
8.7 Techniqlues for Synchronizing Devices with the

Controller ... e 8-23

8.7.1 Enforcing the sequential execution 8-23
8.7.2 Waitforaresponse from the output queue 8-24
8.7.3 Waitforaservicerequestc..ciiint. 8-25
9 DETAILS OF DEVICE MESSAGESccuttn 9-1
9.1 Tableof DeviceMessagescovvvivennennns 9-3
9.1.1 Table of Device Messages

(in the Alphabeticorder) 9-3
9.1.2 Device Messages (Panel correspondence) 9-7
9.1.3 Detailed Explanation of Device Messages 9-18
10 EXAMPLE OF PROGRAMMINGccvivnnennn 10-1

10.1 Example of Program creation Using HP9000 10-6

APPENDIX A

g}

COMPATIBILITY WITH

CONVENTIONAL INSTRUMENTScciivvnnnnn

PATTERN DMA TRANSFER .

TABLES OF INITIAL VALUES
TABLE OF TRACKING ITEMS

A-1

C-1
D-1

SECTION 1
GENERAL

This section outlines the histotrical development of the GPIB standard and gives a general description
of GPIB functions of the MP1763B Pulse Pattern Generator.

1.1
1.2

TABLE OF CONTENTS
Developmentofthe GPIBStandard i i 1-3
MP1763B GPIB FUNCLIONS ...ttt 1-4
1.2.1 Overviews of GPIBfunctions 1-4
1.2.2 Examples of system makeup using GPIB iiiiiiiiiiiin 1-4

1-1

1-2

(Blank)

SECTION1 GENERAL

1.1 Development of the GPIB Standard

The MP1763B, when combined with an external controller in a system bus offers automatic
measurements. For this purpose it is provided with a GPIB interface bus (IEEE std. 488.2-1987) as a
standard feature. The GPIB (General Puropose Interrace Bus) was established by the IEEE (Institute
of Electric and Electronics Engineers) in 1975 as a standard digital interface bus for programmable
measuring instruments. The original version was announced in 1975 under the name IEEE std. 488-
1975.

A revised version, called IEEE std. 488-1978, was issued in 1978. As this version only stipulated
hardware specifications for the interface side, IEEE std. 728-1982, which stipulated software
specifications for the device side, was added in 1982,

Though IEEE std. 728-1982 standardized the formats for sending device messages, it was lacking in its
concept of software sharing on the user side. So, in 1987, the IEEE std. 488. 2-1987 (hereafter IEEE
488.2) version, which aimed to overcome the shortcomings, was introduced. This version strengthened
the standardization of message exchange protocol, message date code, device input / output formats and
common commands.

With the introduction of IEEE 488.2, the name of IEEE std. 488-1978 (hereafter IEEE 488) was
changed to IEEE std. 488. 1-1987 (hereafter IEEE 488.1). The table below summarizes the
development of the GPIB standard.

Object of Former New standard Remarks
standard standard
Hardware IEEE 488 IEEE 488.1 IEEE 488.1 is indentical to IEEE
488
Software IEEE 728 IEEE 488.2 IEEE 488.2 is the revised version
of IEEE 728

Devices which support IEEE 488.2 must also have compatibility with IEEE 488.1; however, devices
which support IEEE 488.1 (IEEE 488) are not guaranteed to be compatible to IEEE 488.2.

1-3

SECTION1 GENERAL

1.2 MP1763B GPIB Functions

The MP1763B has the following GPIB functions.

(1) Apart from the power switch and some LOCAL keys, all functions can be controlled.
(2) Readout of all setting conditions

(3) Interrupt function and serial poll operation

(4) Automatic measuring systems can be constructed by combining the MP1764A with a personal
computer and other measuring instruments.

1.2.1 Overviews of GPIB functions

GPIB can be handled similarly to conventional measuring instrument having 1-port GPIB. It
functions as a device port when it is in ordinary measurement condition; or it functions as a system
controller port to control the MP1764A Error Detector by the system controller’s settings in tracking
operating.

1.2.2 Examples of system makeup using GPIB

(1) Stand-alone type Trackingoperation

MP1763B

O Some settings for the transmitter
are synchronized with the
settings for the receiver. During
this tracking operation, no
external controller can be
connected.

@ Some settings for the receiver are
synchronized with the settings
for the transmitter. During this
tracking operation, no external
controller can be connected.

% In the tracking operation, either
MP1763B or MP1764A canbe a
master (controller).

1-4

SECTION1 GENERAL

(2) Control by the host computer

Host Computer

MP1763B

g ==

PRINTER

By means of controlling MP1763B and MP1764A using the host computer via
GPIB 1 port, data can be output to the printer via MP1764A GPIB 2 port.

1-5

SECTION 1 GENERAL

1-6.

(Blank)

SECTION 2
SPECIFICATIONS

In this section, interface functions of the MP1763B GPIB specifications are explained. For the device

message, see SECTION 9.
TABLE OF CONTENTS
2.1 Interface FUNCLIONS o e e 2-3
2.2 Device Message List 2-4
2.21 |IEEE 488.2 common commands and MP1763B supported commands 2-5
2.2.2 S atUS MSSAgES - ..ottt ittt e e 2-7
223 MP1763B device MeSageS ...ttt ettt et e et 2-9

2-1

2-2

(Blank)

2.1 Interface Functions

SECTION 2 SPECIFICATIONS

IEEE 488.2 sets down a minimum requirement for subsets of the GPIB interface functions specified in
IEEE 488.1 that must be provided by measuring intruments used in a GPIB system. The MP1763B
GPIB provide the subsets listed in the code columns of the tables below.

GPIB Interface Functions

Code Interface function IEEE 488.2 standard
All source handshake functions are provided. | All functions provided as standard. The
SH1 | Synchronizes the timing of data transmission. | device must have a complete set of source
handshake functions.
All acceptor handshake functions are All functions provided as standard. The
AH1 | provided. Synchoronizes the timing for device must have a complete set of acceptor
receiving data. handshake functions.
Basic talker functions are provided. Devices must have one of the T5, T6, TE5 or
6 The serial poll function is provided. TE6 subsets. The talk-only function is out of
The talk-only function is not provided. the scope of the IEEE 488.2 standard.
The talker can be canceled by MLA.
Basic listener functions are provided. Devices must have one of the L3, L4, LE3 or
L4 | The listen-only function is not provided. LE4 subsets. The listen-only function is out
The listener can be canceled by MTA. of the scope of the IEEE 488.2 standard.
SR1 All service request and status byte functions | All functions are provided as standard.
are provided.
RLA All remote / local functions are provided. RLO (functions not provided) or RL1 (all
The local lockout function is provided. functions provided) '
PPO Parallel poll functions are not provided. PPO (functions not provided) or PP1 (all
functions provided)
DC1 | All device clear functions are provided. All functions provided as standard.
DT Device trigger functions are provided. DTO (functions not provided) or DT1 (all
functions provided)
C1,C2 | Controller functions are provided. ‘ C0 (functions not provided) or C4 and C5 or
C3,C4, | Canbe used as controller only for tracking
. any of C7,C9, C11
c7 operation.

2-3

SECTION2 SPECIFICATIONS

2.2 Device Message List

Device messages are message that are transmitted between the controller and the device via the
system interface in the bus mode, i.e. when the ATN line is false. There are two types: program
messages and response messages.

Program messages are ASCII data message transferred from controller to device. There are two types
of program message: program commands and program queries.

Program commands consist of commands specific to devices which are used exclusively for the control
of the MP1763B and IEEE 488.2 common commands. The latter are common commands used for, in
addition to the MP1763B, any measuring instrument conforming to the IEEE 488.2 standard.

Program queries are commands used to elecit are response message from a devcice. A program query is
transferred from the controller to the device so that the controller can receive a response message from
the controller later on.

Reponse messages are ASCII data messages sent from device to controller. Status messages and
response messages for program queries are listed on the following pages.

—u ® Program command (3 For more details, see SECTION 9.)
}—— ® Program query (F For more details, see SECTION 9.)

}— @ |EEE 488.2 common commands
Controller : (ZF'For more details, see SECTION 7.)

Program message

Device

Response message

/ X f— @ Status message (3 For more details, see SECTION 8.)

f—— @ Response message (F For more details, see SECTION 9.)

The messages described above are transferred via the input and output buffers of the device. The
output buffer is also referred to as an output queue. The following table gives a brief explanation of
input and output buffers.

Input buffer Output buffer
A FIFO (First In First Out) memory area where | A FIFO-type queue memory area. All DAB
DAB (program messages or query messages), (response messages) output to a device from the
whose syntax has been analyzed, are controller are all stored in this area until the
temporarily stored before they are executed. controller has read each of them.
The size of the MP1763B is input buffer is 256 | The size of the MP1763B output queue is 256
bytes. bytes.

2-4

SECTION 2 SPECIFICATIONS

2.2.1 IEEE 488.2 common commands and MP1763A supported commands

The table below lists 39 types of common commands specified in the IEEE 488.2 standard. IEEE 488.2
common commands which are supported by the MP1763B are indicated with © symbol in the table.

Mnemonic Command name IEEE488.2 Standard Mngﬁsggsg"ed
*AAD Accept Address Command Optional
*CAL? Calibration Query Optional
*CLS Clear Status Command Mandatory ©
*DDT Define Device Trigger Command Optional

*DDT? Define Device Trigger Query Optional

*DLF Disable Listener Function Command Optional
*DMC Define Macro Command Optional
*EMC Enable Macro Command Optional
*EMC? Enable Macro Query Optional
*ESE Standard Event Status Enable Command Mandatory ©
*ESE? Standard Event Status Enable Query Mandatory ©
*ESR? Standard Event Status Register Query Mandatory ©
*GMC? Get Macro Contents Query Optional
*IDN? Identification Query Mandatory ©
*IST? Individual Status Query Optional
*LMC? Learn Macro Query Optional
*LRN? Learn Device Setup Query Optional
*0PC Operation Complete Command Mandatory ©
*0PC? Operation Complete Query Mandatory ©
*0PT? Option Identification Query Optional
*PCB Pass Control Back Command Mandatory if other

than CO

*PMC Purge Macro Command Optional
*PRE Parallel Poll Register Enable Command Optional
*PRE? Parallel Poll Register Enable Query Optional
*PSC Power On Status Clear Command Optional ©
*PSC? Power On Status Clear Query Optional ©
*PUD Protected User Data Command Optional
*PUD? Protected User Data Query Optional
*RCL Recall Command Optional
*RDT Resource Description Transfer Command Optional
*RDT? Resource Description Transfer Query Optional
*RST Reset Command Mandatory
*SAV Save Command Optional
*SRE Service Request Enable Command Mandatory ©
*SRE? Service Request Enable Query Mandatory ©

2-5

SECTION 2 SPECIFICATIONS

. IEEE488.2 MP1763B supported
Mnemonic Command name Standard commands
*STB? Read Status Byte Query Mandatory ©
*TRG Trigger Command Mandatory if DT1 ©
*TST? Self Test Query Mandatory ©
*WAI Wait to Continue Command Mandatory NE©

2-6

5’ The IEEE 488.2 common commands are always begin with “*" For more details, see SECTION 7.

2.2.2 Status messages

SECTION 2 SPECIFICATIONS

The diagram below shows the structure of service-request summary messages for the status byte

register used with the MP1763B.

Status Byte Register Summary Bit Composition

Bit | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | BitO
Line DIO8 DIO7 DIO6 DIOS DI04 DIO3 DIO2 DIO1
Summary message bit | Notused | g [ESB MAV | ERROR | END | Notused | Notused
v ; QfSs
o AN I U W
bits0~ 5, 7 v:} A
e i
1 [EEPRS S — -
H CService R A | Summary bit from
g o fenuest 1
Y e al (END)
RO A | Summary bit from
/ &ofeach\, . next page ESB
teorrespond) v v | m e e = (ERROR)
N obit
‘i\ MAV summary bit
. R - indicating that the output
. : : queue is not empty
| Senice Request || | Viessage Available (MAV) _/

1 bits0~5,7 1

]

Event Summary Bit
(ESB)

<

Standard event status
enable register

Note : means logical AND operation.

Logical OR \
A A A \ \ A 1\
Output queue
7 > &)<« 7 Power on
6 f > / -~ 6 Not used
b r@) Command error
4 >F&\\ < 4 Error during execution
~ Z/
3 > < 3 Device-dependent error
-~ Z/
2 > & < 2 Query error
g
1 = &)= 1 Not used
~ \ZJ
0 "‘“"Q&/4 0 End of operation

2-7

SECTION2 SPECIFICATIONS

END (Setting completion)

15 >@ s
14 > ®fu
13 > (& 13
— — Not
12 >@ m ot used
1] ~® 1
1o > 10
B > (&) 9 | BACK UP ERROR
8] &) 8 | PLLUNLOCK 31
7 >&) 7
| }—
0] >@ —Sﬂ Not used
5 > (&) 5
}——]
4 > (& 4
— —
3 —>(& | 3 | Delay setting
2 —)@ | 2 | Pattern setting completion
1 —-)@ 1 | File Access completion
——4‘ & —
0] O 0] Not used
Extended END event status|
enable register
Extended END event status register
Y Y Y Y Y Y Y Y Y Y Y YV YY g

To previous —gg——— Logical OR |
page END summary bit

3 1) PLLUNLOCK is allowed only when OPTION-01 is installed.

5] > &) {15])
E > (& -&E
13 > (& 13
12] > (& '_1__5
i1 >& 11
m ~E 19
] & o]
8 | >@ 8] > Notused
7 (& 7
E > (& E
5 ~E H
4 > (& 4
z—-————» & E
2}—& 2]/
i{—» & | 1 | FD malfunction occurred
0 H& | 0 | Not used
Extended ERROR gvent Extended ERROR event status register
status enable register
f YYVYY (Y YYYYYYY
To previous OR |

page ERROR summary bit

2-8

SECTION 2 SPECIFICATIONS

2.2.3 MP1763B device messages

The device messages consist of fixed program commands of the MP1763B queries and response
messages. The device messages list and description are shown in Section 9.

2-9

SECTION 2 SPECIFICATIONS

(Blank)

2-10.

SECTION 3
CONNECTING THE BUS AND SETTING ADDRESS

The remote control of devices connected to the GPIB system interface begins with referring to their
addresses as control procedure parameters. This section describes the GPIB cable connections and
setting of addresses that must be performed before using the GPIB interface.

TABLE OF CONTENTS
3.1 Connecting Deviceswith GPIBCables i, 3-3
3.2 Procedure for Setting the Address and Checkingit o .t 3-4
3.2.1 Address setting i e 3-5
3.2.2 Connection with MP1764A during the tracking operation 3-6

3-1

3-2

(Blank)

SECTION3 CONNECTING THE BUS AND SETTING ADDRESS

3.1 Connecting Devices with GPIB Cables

The rear panel has connector for connecting GPIB cables. The cables must be connected before the
power is switched on.

A maximum of 15 devices, including the controller, can be connected to one system. The restrictions
indicated at the right of the diagram below should be observed when connecting many devices to one
system.

A

Total cable length 20m
/Each cable length between devices= 4m

Number of devices which can be
connected

IA

15

3-3

SECTION3 CONNECTING THE BUS AND SETTING ADDRESS

3.2 Procedures for Setting the Address and Checking it

Set the GPIB address for the MP1763B after or before turning on the power. The GPIB address is
factory-set to 0. The address is preset with the GPIB ADDRESS switch on the rear panel. There is no
need to set the address if using the default address. To change the address, put the MP1763B in the
local state and input the address using the GPIB ADDRESS switch on the rear panel. Devices
connected to the GPIB are normally in the local state when the power is turned on.

Note : 1) The system always checks the GPIB “ADDRESS” switch settings when the power is
turned on and determines its own address. So, changing the address is always
allowed unless the system is in remote state.

2) To control the system as a device from an external controller, set “SYSTEM
CONTROL” of the GPIB address switch to OFF(0).

/INFILSUPULSE PATTERN GENERATOR MP17638 0.05- 12.5GHz

HTERNAL GLOGK (OPTIONGI] FATTRAN N SUTPUT
LOGIC P PATTERN ===y pmceme PROB [JERD SUBST —=mmmy +PRES MARK RATIO s DATA
| g8 £8B 8gg = |||[B TFTECLE2EERRRY]||[2o s gBE8..-8688.]
LTy RESOLUTON O C{,@ g][‘Z] @[}j ESL DSPAY .
cafo) EF || S 2 S | N
[|2 e m lgw O O
@ 568 céeeeaem@@ S5 F?] g g;—“ﬁJ
'WA“’MMW_@' D D D ©
Som):(f?)z SR 8888868888 T @@
- r‘u=~u:|§l gv: grmo\mn [Qoex 1 —
om0l obod oo o |l|Er 8888, .- 8868,
. : oot o855 | &
— I || === e || S0 O O
m O 000 = Z ,

om raEL e §YHC DUTPUT ooy outeut
€3 1% coex DAIA cocx 1

GLocK 2
mmom}unm .

Aopte ;= 2 van P T A AN A
s o o o (9 ‘<H

eeeuevmu«l
°/- W 200 oo UTrUt Y0 TRt Cueer 8/.1¥ 830

= =

MP1763B Front panel

3-4

SECTION3 CONNECTING THE BUS AND SETTING ADDRESS

3.2.1 Address setting
The GPIB address for GPIB port of MP1763B are set with the DIP switch on the rear panel.

MP1763B Rear panel

ADDRESS
SYSTEM]
CONTROL—-I 543 2 1 GPIB

o d___P

off |l booooolg

GPIB address setting For tracking, device

The GPIB address can be set 0 to 30. Five switches are weighed differently: “5”,“4”,“3”, “2” and “1”
are respectively weighed to 16, 8,4, 2 and 1.

To set the address to 11, for example, the operation is as follows: Since
11=8+2+1,

set switches “4”, “2” and “1” to ON as shown below.

ON (- I

OFF | [— 0

However, address 31, where all the switches are set to ON, is assumed to be address 0.

3-5

SECTION3 CONNECTING THE BUS AND SETTING ADDRESS

3.2.2 Connection with MP1764A during the tracking operation

Tracking operation is a function that pattern settings are made to be synchronized with each other
between MP1763B and MP1764A. Either MP1763B or MP1764A is made to be a Master and the other
is made to be a Slave, and the settings for the Slave are synchronized with those for the Master.

(1) IfMP1763B is a Master and controls MP1764A:

When the settings for MP1763B are set to MP1764A via GPIB, the setting and connection are as
follows:

MP1763B rear panel MP1764A rear panel

0

T i

5 (gl o ﬁ@]

8l

GPIB cable

a) Likethe diagram above, the GPIB connector on the MP1763B’s rear panel is connected with the
GPIB 1 connector on the MP1764A via the GPIB cable (included).

b) Set“SYSTEM CONTROL” of the GPIB address switch on the MP1763B’ rear panel to ON (1).

¢) Set the value of the GPIB 1 address switch on the MP1764A’s rear panel to that of MP1763B’s
GPIB address +2.

d) Turnonthe MP1763B power again.
e) Setthe TRACKING key on the MP1763B’s front panel to ON.

By now, you are ready to perform pattern-tracking.

3-6

SECTION3 CONNECTING THE BUS AND SETTING ADDRESS

(2) If MP1764A is a Master and controls MP1763A:

When the settings for MP1764A are set for MP1763B via GPIB, the setting and connection are as
follows:

a)

b)
c)

d)

e)

MP1763B rear panel MP1764A rear panel

GPIB cable

Like the diagram above, the GPIB 1 connector on the MP1764’s rear panel is connected with the
GPIB connector on the MP1763B via the GPIB cable (included).

Set “SYSTEM CONTROL” of the GPIB 1 address switch on the MP1764A’s rear panel to ON (1).

Set the value of the GPIB address switch on the MP1763B’s rear panel to that of MP1764A’s GPIB
1 address+ 2.

Turn on the MP1764A power again.
Set the TRACKING key on the MP1764A’s front panel to ON.

By now, you are ready to perform pattern-tracking.

3-7

SECTION3 CONNECTING THE BUS AND SETTING ADDRESé

(3) Items to be tracked between MP1763B and MP1764A

The setting items to be tracked using pattern-tracking function are as follows:

Pattern-setting area on the MP1763B's front panel

PATTERN

WﬁﬂWﬁWfWﬁf%ﬁW%

| 5 e

ERROR ADDITION(1><1D
r-—— I:l [::l l: E:l I:l E:]

i
§

SINGLE
I

\\\\\\

/

e Ty
BBE| 855
Wﬁﬁ’/ﬁ%@éﬁ%

)

Y

\\\

PRESET T /

— ALL v PAGE) PATTERN TRACKI
GUARD 0 1 0 1 e

O O O O O = =)

Items to be tracked are pattern-settings for the shaded area shown on the above diagram.

Within the shaded area shown above, however, the area where a setting for MP1763B does not coincide
with that for MP1764A (such as error analysis data on the MP1764A Error Detector) cannot be
pattern-tracked.

2 For more information on the setting items to be pattern-tracked, see “APPENDIX D Tracking
Items List.”

SECTION 4
INITIAL SETTINGS

There are 3 levels of initialization for the GPIB interface system. The first level is bus initialization in
which the system bus is in the idle state. The second level is initialization for message exchange in
which devices are able to receive program message. The third level is device initialization in which
device functions are initialized. These levels of initialization prepare a device for operation.

Control commands by ANRITSU PACKET V series personal computers are applied for formats and
use examples in this section.

4.1
4.2
4.3
4.4
4.5

TABLE OF CONTENTS
Bus Initialization by the IFCStatement i, 4-4
Initialization for Message Exchange by DCL and SDCBus Commands 4-6
Device Initialization by the kRSTCommand o iiiiiiiiiiian... 4-8
Device Initialization bythe INICommand i ... 4-10
Device Status at POWer-0n e 4-11

4-1

(Blank)

SECTION4 INITIAL SETTING

The IEEE 488.1 standard stipulates the following two levels for the initialization of the GPIB system.
® Bus initialization

All interface functions connected to the bus are initialized by IFC messages from the controller.
¢ Device initialization

The DCL GPIB bus command returns all devices to their initial states while the SDC GPIB bus
command returns designated devices only to their stipulated initial states.

In the IEEE 488.2 standard the initialization levels are divided into three, with bus initialization as
the highest level. The second level is initialization for message exchange and third device initilazation.
This standard also stipulates that a device must be set to a known state when the power is turned on.
The above details are summarized in the table below.

Initialization

Level type

Description

All interface functions connected to the
Bus ele 1.
1 i 1e e bus are initialized by IFC messages from
initialization
the controller

: The DCL and SDC GPIB bus commands
Initialization | perform initialization for message

2 for the exchange for all devices and designated
exchange of devices, respectively, as well as
messages nullifying the function to report the end

of operation to the controller.

The *kRST or INI reset command resets
Device only specified devices, from among those
3 initialization connected to the GPIB, to their known
states regardless of the conditions under
which they were previously being used.

For levels 1, 2 and 3, see the following description that focuses the instructions for executing these
initializations and their results which mean the items to be initialized. Also, the known states to be
set at power-on are described.

4-3

SECTION4 INITIAL SETTING

IFC @

4.1 Bus Initialization by the IFC Statement

M Syntax
IFCAQ select code

M Example
IFC @1

M Explanation

The IFC line of the GPIB in the stipulated select code is kept active for approximately 100 us
(electrically low level state).

When IFC@ is executed, the interface functions of all devices connected to the bus line of the GPIB in
the select code are initialized. Only the system controller can send this command.

The initialization of interface functions involves erasing the settings made by the controller and
resetting them to their initial states. In the table below, O indicates the functions which are
initialized; A indicates the functions which are partially initialized.

No Function Symbol Initialization by IFC
1 Source handshake SH O
2 Acceptor handshake AH O
3 Talker or extended talker Tor TE O
4 Listener or extended listener Lor LT O
5 Service request SR A
6 Remote / local RL
7 Parallel poll PP
8 Device clear DC
9 Device trigger DT

10 | Controller C O

Even if the IFC statement is True (the level of the IFC line is set to low by execution of the IFC@
statement), levels 2 and 3 initialization are not performed, so, it does not affect devicer operating
conditions (parameter setting, LEDs ON / OFF, etc.).

The following lists the effect of the IFC statement on some device functions taken from the table above.

4-4

SECTION 4 INITIAL SETTING

@ Talker / listener
All talkers and listeners are put in the idle state (TIDS, LIDS) within 1004s.
@ Controller

The controller is put in the idle state (CIDS — Controller Idle State) within 100 us if it is not active
(SACS — System Control Active State).

® Return of control

If the system controller (the device on the GPIB initially designated as controller) has given up its
control function to another device, executing IFC@ returns the control function to the system
controller. The system controller’s RESET key causes it to output an IFC message.

@ Service request devices

The IFC statement has no effect on a device sending an SRQ message to the controller (the SRQ line
in the figure below is set to low level by the device), but it does clear the condition that the controller
has put all devices connected to the system bus into serial poll mode.

® Devices in the remote state

The IFC statement has no effect on devices in the remote state.

SECTION4 INITIAL SETTING

DCL @

4.2 Initialization for Message Exchange by DCL and SDC Bus Commands

H Syntax

DCLAR@ select code [primary address] [secondary address]

M Example
DCL @1 Initializes all devices under the bus for message exchange (sending DCL).
DCL @1@3 Initializes only the device whose address is 3 for message exchange (sending

SDC).

M Explanation

This statement carries out the initialization for message exchange for all devices on the GPIB of the
specified select code or that for specified devices only.

The purpose of initialization for message exchange is to prepare devices to receive new commands
from the controller when the sections of devices used for the exchange of messages are in an
inappropriate state to be controlled by the controller as the result of the execution of other programs,
etc. There is no need to change the panel settings, however.

B When only the select code is specified

This carries out the initialization for message exchange of all devices on the GPIB of the specified
select code. DCL@ sends a DCL (Device Clear) bus command to the GPIB.

M When the address is specified

Performs initialization for message exchange for the specified device. After clearing the listeners on
the GPIB of the specified select code, the specified device only is set to listener and an SDC (Selected
Device Clear) bus command is output.

M Items to be initialized for message exchange
@ Input buffer and output queue Cleared
@ Parser, execution controller and response formatter . Reset

® Device commands including *kRST All commands that interfere with the
execution of these commands are cleared.

@ Coupled-parameter program messages All commands (in the execution pending
sections and queries) are discarded
because they are coupled parameters.

® Processing the kOPC command Puts a device in OCIS (Operation
Complete Idle State). As a result, the
operation complete bit cannot be set in
the standard event status register.

4-6

® Processing the *OPC?query
g

@ Automation of system construction

Device functionsue ...

CAUTION

SECTION4 INITIAL SETTING

Puts a device in OQIS (Operation
Complete Query Idle State). As aresult,
the operation complete bit cannot be set
in the output queue. The MAV bitis
cleared.

The **ADD and **DLF common
commands are nullified.

(These commands are not supported on
the MP1763B)

Functions for message exchange are put
in the idle state. The device continues to
wait for a message from the controller.

Device clear is prohibited from carrying out the followings.

O Changing the current device settings or stored data.

® Interrupting front panel 11 O

® Changing any other status bit except clearing the MAV bit, when clearing the

output queue.

@ Interrupting or having any effect on the device that is currently operating.

M Transmission sequence of GPIB bus commands by the DCL@ statement.
The transmission sequence of the DCL and SDC GPIB bus commands by the DCL@ statement is

shown in the table below.

Statement Bus command transmission sequence Data
(at ATN line "LOW™) (at ATN LINE "HIGH")
DCL@ select code UNL, DCL
DCL@ device number | UNL, LISTEN address, [secondary address], SDC

4-7

SECTION4 INITIAL SETTING

*RST

4.3 Device Initialization by the *RST Command

M Syntax
*RST

M Example ;
WRITE @1@3:"*RST" Initializes only the device of the address 3 with level 3.

M Explanation
The *RST (Reset) is an IEEE 488.2 common command which resets a device with level 3.

Normally devices are set to various states using the commands specific to each device (device
messages). The *¥RST command is one of these and is used to reset a device to a specific known state.
The function of nullifying of the end of operation is the same as for level 2.

M Specifying device number in WRITE@ statement
The device with the specified address is initialized with level 3.

After clearing the listeners on the GPIB of the specified select code while the ATN line is active, only
the specified device is set to listener.

When the ATN line is false, the *kRST command is sent.

M Device Initialization Items
D Device-dependent functions and states

A device is returned to a known state regardless of its current condition. (See the next page for the
list.)

® Processing of the ¥ OPC command

The device is put into OCIS (Operation Complete Idle State). As a result, the operation complete
bit cannot be set in the standard event status register.

® Processing the *kOPC? query

The device is put into OQIS (Operation Complete Query Idle State). As a result, the operation
complete bit cannot be set in the output queue. The MAV bit is cleared.

@ Macro commands

Disables macro operations and puts a device in a mode in which it cannot receive macro
commands. Also, the definition of macros is returned to the state specified by the system designer.

Note : The ¥RST command does not affect the items listed below.
DIEEE 488.1 interface state
@ Device address
® Output queue
@ Service Request Enable Register

4-8

® Standard Event Status Enable Register

® Power-on-status-clear flag setting

@ Calibration data affecting device specification
Macros defined by the DMC (Define Macro Contents) command
@ Response messages for the PUD (Protect User Data) query

SECTION4 INITIAL SETTING

@ Response messages for the RDT (Resource Description Transfer) query

There are also preset parameters, etc specific to the MP1763B for the control of external
devices, etc. (Refer to SECTION 8 for items @, @ and ®. The MP1763B does not support
items ® t0 @©.)

The table below shows the initial settings proper to the MP1763B for the functions and status.

Initial Settings

Group Initial Settings Notes
Setting States |Initialized to the status at delivery See Appendix C Initial Value List for Initial
Values.
GPIB Address | Not initialized
Time & Date | Notinitialized

4-9

SECTION 4 INITIAL SETTING

INI

4.4 Device Initialization by the INI Command

M Syntax
INI

M Example (program message)
WRITE @1@3:"INI" Initializing only the device assigned address 3 with level 3.

M Description

The INI command is one of the device messages proper to MP1763B; this command is sent as a
program message to the device from the controller to reset the device with level 3.

M Specifying a device number in the WRITE@ statement
Initializes the device assigned a specified address with level 3.

The sequence of sending out commands is as follows; listener(s) is(are) released by the GPIB having
a specified selection code while the ATN line is true, then only specified device(s) is(are) set to
listener(s). When the ATN line turns to false, the INI command is output to the specified listener(s)
as a program message.

H Device's items to be initialized

The device’s items to be initialized are setting status, clock and date.

4-10

4.5 Device Status at Power-on

When the power is switched on:

D The device status is the one when the power was last switched off.
@ The input buffer and output queue are cleared.

® The parser, execution control and response formatter are reset.

SECTION 4 INITIAL SETTING

® The device is put into the OCIS (Operation Complete Command Idle State).
® The device is put into the OQIS (Operation Complete Query Idle State).

® The MP1763B supports the ¥PSC command. Therefore, when the PSC flag is true and all event
status enable registers are cleared. Events can be recorded after the registers have been cleared.

As a special case for @D, the settings are the same as the ones in the Initial Settings Table (in C-1) the
first time the MP1763B is switched on after delivery. The diagram below shows the transition states of

items @ to ®.

® |nput buffer pon \/ dcas

® Output queue

H Items which do not change at power-on
O Address

@ Related calibration data (The MP1763B has no calibration data.)

> Clear

Parser

Execution
controller

Response
formatter

pon \/ dcas

Reset

Operation
0 I S Complete
Q Query
Idle State

Operation
O C I S Complete
Command
Idle State

® Data or states which are changed by responses to the common queries listed below.

*IDN?
*OPT? (Notsupported by the MP1763B)
*psc?
*pUD? (Notsupported by the MP1763B)

*¥RDT? (Notsupported by the MP1763B)

4-11

SECTION4 OPERATION

M Items related to power-on-status-clear (PSC) flag

The PSC flag has no effect on the Service Request Enable Register, Standard Event Status Enable
Register or Extended Event Status Enable Register when it is false. These registers are cleared
when it is true or the *¥PSC command is not being executed.

H Items which change at power on

@ Current device function state

® Status information

(® *SAV/ *RCLregisters

@ Marco-definition defined by the 3kDDT command (not supported by the MP17638)
® Marco-definition defined by * DMC command (not supported by the MP17638)

® Macros enabled by the X EMC command (not supported by the MP1763B)

(@ Addresses received by the *kPCB command (not supported by the MP1763B)

4-12.

SECTION 5
LISTENER INPUT FORMAT

Two types of data message are transmitted between the controller and a device via the system interface
when the bus is in the data mode (i.e. the ATN line is false): program messages and response messages.
This section describes the format of program messages received by the listener.

Control commands by ANRITSU PACKET V series personal computers are applied for program
examples in this section.

51

5.2

5.3

TABLE OF CONTENTS
Listener Input Program Message Syntax Notation, 5-4
5.1.1 Separators, terminators and spaces before headers, 5-4
5.1.2 General format for program command messagesooiiiia.. 5-6
5.1.3 General format forquerymessages i 5-7
Functional Elements of Program Messages e 5-8
5.2.1 <TERMINATED PROGRAM MESSAGE>t 5-8
522 <PROGRAM MESSAGE TERMINATOR> it 5-9
5.2.3 <White SPaCE > L. 5-10
5.2.4 <PROGRAM MESSAGE > ... e 5-10
5.2.5 <PROGRAM MESSAGE UNIT SEPARATOR> it 5-11
5.2.6 <PROGRAM MESSAGE UNIT > ... e 5-11
527 <COMMAND MESSAGE UNIT> and <QUERY MESSAGEUNIT> 5-12
5238 <COMMAND PROGRAM HEADER> i iiiiiiiiiiiieanns 5-13
5.2.9 <QUERY PROGRAM HEADER> e 5-15
5.2.10 <PROGRAM HEADERSEPARATOR>ttt 5-16
5.2.11 <PROGRAM DATA SEPARATOR > e 5-16
Program Data Format e 5-17
5.3.1 <DECIMAL NUMERICPROGRAM DATA> it 5-18
5.3.2 <NON-DECIMAL NUMERICPROGRAM DATA> 5-20

5-1

5-2

(Blank)

SECTION5 LISTENERINPUT FORMAT

Program messages comprise a sequence of program message units which are either program commands
or program queries.

In the diagram below, in which the data output and clock output termination voltage is set to GND, the
controller sends a program message, composed of two program units DTMA @ and CTMA @ linked by a
program-message unit separator to a device.

<TERMINATED PROGRAM MESSAGE >
-,

Address 3 Listener address specification < PROGRAM MESSAGE > < PROGRAM MESSAGE TERMINATOR >
AR N
Listener AQ Talker
(device) (controller)
S s o S
<PROGRAM MESSAGE UNIT> <PROGRAM MESSAGE UNIT SEPARATOR > <PROGRAM MESSAGE UNIT > sp <NL>
DTM @ sp;sp CiM_© \

<whitespace> 3 <white space> / <white space> NL

< COMMAND PROGRAM HEADER > < COMMAND PROGRAM HEADER >

< PROGRAM HEADER SEPARATOR > <PROGRAM DATA > < PROGRAM HEADER SEPARATOR > <PROGRAM DATA >
sp /) sp
<white space > <white space >
<program mnemonic> <decimal numeric program data> <decimal numeric program data>

The program message format is a sequence of functional elements which are the minimum
requirement for indicating a function. The groups of upper-case alphabetic characters enclosed by < >
in the diagram above are examples of functional elements. Functional elements can be further divided
into “encoded elements”. The groups of lower-case alphabetic characters enclosed by < > in the
diagram above are examples of encoded elements.

A diagram indicating the selection of functional elements on a specific path is called a functional
syntax diagram, while a diagram indicating the selection of encoded elements on a specific path is
called an encoded syntax diagram. The following pages explain program message format using these
two diagrams.

Encoded elements represent encoded elements of the actual bus required to send functional element
data bytes to a device. Listeners (which receive the functional element data bytes) determine whether
they conform to the rules for encoding. If they do not, the listener does not recognize them as functional
elements and generates a command error.

SECTIONS LISTENERINPUT FORMAT

5.1 Listener Input Program Message Syntax Notation

The following explains program message functional element and program data formats (Compound

and common commands have been omitted)

5.1.1 Separators, terminators and spaces before headers

(1) Program message unit separators

The format for separating program message units is optional space(s) + semicolon.

Example 1: General format for separating two program message units

<white
space>

Example 2: 1 space + semicolon

DTM @A ; CTM @

(2) Program data separators

The format for separating program data items is optional space(s) + comma + optional space(s).

Example 1: General format for separating 2 items of program data

<white
space>

Example 2: Comma only
WRT 1,0
Example 3: Comma + 1 space

WRT 1,A0

5-4

<white
space>

(3) Program header separators
The format for separating a program header from program data is:
1 space + optional space(s).

Example 1: General format for single command program header

<white space> <white space>

SECTIONS5 LISTENERINPUT FORMAT

Example 2: 1 space

DTMA®

(4) Program message terminators

The format for the terminator at the end of a program message is:
optional space(s) + any of NL, EOI or NL + EOI

General format:

<white space>

(5) Spaces before headers
An optional space may be placed before a program header.

General format:

<white space>

Example: 1 space is placed before the second program header SPF.

DTM @;ACTM @

5-5

SECTION5 LISTENERINPUT FORMAT

5.1.2 General format for program command messages

(1) Messages not accompanied

Examples:

INI Initializes setting

(2) Messages accompanied by integer data

o——I <HR> —> NR1

Example:

by data
<HR> >
HR: COMMAND PROGRAM HEADER
NR1 :integer

PTSAD Sets ALTERNATE pattern

PTSA1 Sets DATA pattern

PTSA2 Sets ZERO SUBSTITUTION pattern

PTSA3 Sets PRBS pattern

(3) Messages accompanied by real numbers

O—I <HR>

Example:

-—-> NR2

Y

NR2 : real number

CAPA2.003 Sets the clock output amplitude.

(4) Messages accompanied by HEX (hexadecimal)

O——‘| <HR>

Example:

BITA#H FFFF

5-6

—E

Y

SECTION5 LISTENERINPUTFORMAT

(5) Messages accompanied by multiple program data items

O
o— <HR> @ NR1 or NR2 —@—L' NR1 or NR2
I
Example:

RTMA99,10,10,14,30,30 Setsinternal timer to 14:30:30 10 October 1999.

5.1.3 General format for query messages

A query program header is indicated by placing a ? at the end of a command program header.

(1) Messages not accompanied by query data

o l <HR> >

DTM? Requests data output termination voltage data

Example :

(2) Messages accompanied by query data

o—-l <HR> —--- NR1 or NR2 | NR1or NR2 }—>
I——

Example:

FSH? 1 Requests file information whose file No. is from 51 in the files saving measurement
conditions in a floppy disk.

7

5-7

SECTIONS LISTENERINPUT FORMAT

5.2 Functional Elements of Program Messages

A device accepts a program message by detecting the terminator at the end of it. The functional
elements of program messages are explained below.

5.2.1 <TERMINATED PROGRAM MESSAGE >
A <TERMINATED PROGRAM MESSAGE > is defined as follows.

<PROGRAM
MESSAGE
TERMINATOR>

G _ | <PROGRAM MESSAGE >

Y

A <TERMINATED PROGRAM MESSAGE > is a data message which has all the functional elements
required for transmission from the controller to a listener device. A <PROGRAM MESSAGE
TERMINATOR > is attached to the end ofa <PROGRAM MESSAGE > to terminate its transmission.

Example: < TERMINATED PROGRAM MESSAGE > which sends 2 commands with a WRITE

statement.
<TERMINATED PROGRAM MESSAGE >
e
' N
Address 3 Listener address specification < PROGRAM MESSAGE > < PROGRAM MESSAGE TERMINATOR >

Talker

Listener

R R A R e e e

Functional element

5-8

SECTION5 LISTENER INPUT FORMAT

5.2.2 <PROGRAM MESSAGE TERMINATOR >
A <PROGRAM MESSAGE TERMINATOR > is defined as follows

Y

<white space>

A <PROGRAM MESSAGE TERMINATOR > terminates a sequence of one or more <PROGRAM
MESSAGE UNIT > elements of a fixed length.

NL is defined as a single ASCII code byte (decimal 10), i.e. the ASCII control code LF (Line
Feed) used to return the carriage and bring the print position to the beginning of the next line.
Itis also called NL (New Line). When a <PROGRAM MESSAGE > is sent by a WRITE@
statement, there is no need to write the generation of CR.LF code into programs because it is
automatically sent by this statement. To generate LF code only, the following statement is
executed at the beginning of a program: TERM IS CHR$(10)

The EOI signal can be generated by making the EOI line (one of GPIB management bus lines)

NL:

END:

DIO

EOI

true (low level).

/ Last data byte

—{ byte |..... byte C Le —
1 n R F
Binary data string Terminator

EOIsignal

— |

CR

®

EOI ON / OFF is one statement for controlling
the EOI line. The defaultis EOl OFF which
means that the EOI line is not controlled.
Specifying EOl ON causes an EOI signal to be
transmitted at the same time as terminator
LF when the last data byte of the WRITE@
statement is transmitted.

A <PROGRAM MESSAGE > may also be
terminated, without sending LF, by using an
END signal only.

Note :

CR returns the carriage to the beginning of the
same line, but is generally ignored on the listener
side. However, because there is a lot of
equipment already on the market which uses CR
and LF code, most controllers are designed to
output LF code following CR code.

5-9

SECTION5 LISTENERINPUT FORMAT

5.2.3 <white space>

A <white space> is defined as follows.

A

<white space
character>

A <white space character > is defined as a single ASCII code byte in the range 00 to 09, 0B to 20
(decimal 0t0 9, 11 to 32).

This range includes ASCII control signals and space signal except new line. A device either treats
them as ASCII control signals but as spaces, or skips over them.

5.2.4 <PROGRAM MESSAGE>
A <PROGRAM MESSAGE > is defined as follows.

<PROGRAM

MESSAGE UNIT €
SEPARATOR>

> <PROGRAM MESSAGE UNIT> >

Y

A <PROGRAM MESSAGE > consists of zeros, or a sequence of one or several <PROGRAM
MESSAGE UNIT > elements. <PROGRAM MESSAGE UNIT > elements are either programming
commands or data sent from the controller to devices. The <PROGRAM MESSAGE UNIT
SEPARATOR> element is used to separate <PROGRAM MESSAGE UNITS>.

Example 1:

The program message which sets the data input termination voltage to GND.

DTM @
Example 2:

The program message which sets as same as the Example 1, and then sets the clock input termination
voltage to GND.

<PROGxM MESSAGE >
DM © . CTM @

< PROGRAM MESSAGE UNIT> < PROGRAM MESSAGE UNIT SEPARATOR > < PROGRAM MESSAGE UNIT >

5-10

SECTION5 LISTENER INPUT FORMAT

5.2.5 <PROGRAM MESSAGE UNIT SEPARATOR >
A <PROGRAM MESSAGE UNIT SEPARATOR > is defined as follows.

Y

<white =

space > \i/

Y

Y

<white space>is defined as follows.

A

<white space
character>

The <PROGRAM MESSAGE UNIT SEPARATOR > separates the <PROGRAM MESSAGE UNIT >
elements ina <PROGRAM MESSAGE>. A device interprets a semicolon as the separator of
<PROGRAM MESSAGE UNIT > elements so, it skips the <white space characters> before and after
the semicolon. <white space characters> make a program easy to read. If there is one after a
semicolon, it is the <white space > for the next program header.

5.2.6 <PROGRAM MESSAGE UNIT>
A <PROGRAM MESSAGE UNIT > is defined as follows.

<COMMAND MESSAGE UNIT>

<QUERY MESSAGE UNIT>

A <PROGRAM MESSAGE UNIT > is either the <COMMAND MESSAGE UNIT> or <QUERY
MESSAGE UNIT > received by a device. <COMMAND MESSAGE UNITS> and <QUERY
MESSAGE UNITS > are explained in detail on the next page.

5-11

SECTIONS5 LISTENERINPUT FORMAT

5.2.7 <COMMAND MESSAGE UNIT> and <QUERY MESSAGE UNIT >
1) A <COMMAND MESSAGE UNIT > is defined as follows.

<PROGRAM
DATA
SEPARATOR>

<COMMAND <PROGRAM
—_— PROGRAM HEADER <PROGRAM DATA> 7
HEADER> SEPARATOR>

< Example> < PROGRAM DATA >

' \
RTM 99, 12, 10, 16,23,49

< COMMAND PROGRAM HEADER > < PROGRAM HEADER SEPARATOR > < PROGRAM DATA SEPARATOR >

2) A <QUERY MESSAGE UNIT > is defined as follows.

<PROGRAM

<QUERY
PROGRAM
HEADER>

<PROGRAM
HEADER
EPARATOR>

<PROGRAM DATA> 7>

Y

<Example> <PROGRAM DATA >
FSH? 1
< QUERY PROGRAM HEADER> < PROGRAM HEADER SEPARATOR >

For both <COMMAND MESSAGE UNITS> and <QUERY MESSAGE UNITS>, a space must be
inserted between the program header and any program data immediately following it. The application,
function and operation of the program data can be seen from the program header. If there is no
program data; the application, function or operation to be performed by a device is indicated by the
header alone.

The <COMMAND PROGRAM HEADER > is a command by which the controller controls a device.
<QUERY PROGRAM HEADER > is a command used for sending a query from the controller to a
device so that the controller can receive a response message from it.

The special feature of the header is that a question mark is always tagged on at the end to indicate that
it is a query.

5-12

5.2.8 <COMMAND PROGRAM HEADER >
A <COMMAND PROGRAM HEADER > is defined as follows. A <white space> may be placed in

front of each header.

<white

SECTION5 LISTENERINPUTFORMAT

<simple command

space>

program header>

<common command
program header>

1) A <simple command program header > is defined as follows.

<program
mnemonic>

2) A <common command program header> is defined as follows.

—@-

<program
mnemonic>

3) A <program mnemonic> is defined as follows.

<upper/ lower

<upper/lower
case alpha>

case alpha>

L
-~

()
N

_

<digit>

5-13

SECTIONS5 LISTENERINPUT FORMAT

B <COMMAND PROGRAM HEADER>

Indicates the application, function and operation of a program to be executed by a device. If there is no
program data; the application, function and operation to be executed by the device are indicated in the
header itself. This is expressed in ASCII code characters by a <program mnemonic>, usually called
just mnemonic.

The following explains items 1), 2) and 3) above and the definition of mnemonics.

M <program mnemonic>

A mnemonic must begin with upper-case or lower-case alphabetic characters. Following that, upper-
case alphabetic characters from A to Z, lower-case alphabetic characters, the underline and numbers
from 1 to 9 can be used in any combination. The maximum length of a mnemonic is 12 characters but
they usually consist of 3 to 4 upper-case alphabetic characters. There are no spaces between
characters.

® <upper /lower-case alpha >

Defined as a single ASCII code byte in the range 41 to 5A, 61 to 7TA (decimal 65 t0 90,97 to 122 = A
to Z, a to z).

o <digit>

Digits are defined as single ASCII code byte in the range 30 to 39 (decimal 48 to 57 = numeric 0 to
9).

e ()
The underline is defined as the single ASCII code byte 5F (decimal 95).

M <simple command program header>

The above definition for <program mnemonic> is used as it is.

M <common command program header>

An asterisk is always placed before the <program mnemonic> in a <common command program
header>. The word ‘common’ is used to indicate that the <common command program header > is
applicable to all other measuring instruments conforming to the IEEE 488.2 standard connected to the
bus.

¢ Example

The operation (of the device with address 3 connected to the select code 1 GPIB interface) is
terminated and it is put in the idle state; then each device is reset to the initial state stipulated for it.

WRITE @1@3:"%RST": % RST is the common IEEE 488.2 command which
executes the above.

5-14

SECTION5 LISTENERINPUT FORMAT

5.2.9 <QUERY PROGRAM HEADER>

A <QUERY PROGRAM HEADER> is defined as follows. A <white space> is placed before each
header.

<white
<simple query

space> >
j program header>
<common query

program header>

Y

Y

1) A <simple query program header > is defined as follows.

<program
—_— 5] e
mnemonic>

2) A <common query program header> is defined as follows.

m <program "
~ % > m L,
v mnemonic>

B <QUERY PROGRAM HEADER>

A <QUERY PROGRAM HEADER > is a command for sending a query from the controller to a device
so that the controller can receive a response message fromit. A ?is always added at the end of the
header to indicate a query.

F Except for the ? after it, the format of the <QUERY PROGRAM HEADER> is identical to that of the <COMMAND
PROGRAM HEADER>.

5-15

SECTION5 LISTENERINPUT FORMAT

5.2.10 <PROGRAM HEADER SEPARATOR >
A <PROGRAM HEADER SEPARATOR > is defined as follows.

<white
space>

\

A <PROGRAM HEADER SEPARATOR > is used to separate a <COMMAND PROGRAM
HEADER> or <QUERY PROGRAM HEADER > from <PROGRAM DATA >. When there is more
than one <white space character > between a program header and program data, the first is
interpreted as the separator and the rest are skipped. <white space characters> are used to make a
program easy to read.

So, there must always be one header separator between the header and the data to indicate the end of
the program header and the start of the program data.

5.2.11 <PROGRAM DATA SEPARATOR >
A <PROGRAM DATA SEPARATOR > is defined as follows.

<white <white
space> space>

When a <COMMAND PROGRAM HEADER > or <QUERY PROGRAM HEADER > has many
parameters, A <PROGRAM DATA SEPARATOR > is used to separate them.

A comma must be used witha <PROGRAM DATA SEPARATOR >, but a white space does not always
have to be used. A white space before or after the comma is skipped. They are used to make a program
easier to read.

<Examp|e> < PROGRAM DATA >
' \
RTM _99,12,10,16,23,40
< COMMAND PROGRAM HEADER > <PROGRAM HEADER SEPARATOR > < PROGRAM DATA SéPARATOR >

5-16

SECTION 5 LISTENERINPUT FORMAT

5.3 Program Data Format
The following describes the format of <PROGRAM DATA>.

<PROGRAM DATA > functional elements are used in sending various types of parameter related to
the program header. The diagram below shows the different types of program data. The MP1763B
accepts the data types in the shaded ovals.

< CHARACTER
\ - PROGRAM DATA>

<DECIMAL NUMERIC

<SUFFIX
PROGRAM DATA>

Y

<NON-DECIMAL
NUMERIC

PROGRAM DATA > N
<STRING
PROGRAM DATA> N

<ARBITRARY
BLOCK
DA

<EXPRESSION

Y

PROGRAM DATA>

5-17

SECTION5 LISTENERINPUT FORMAT

5.3.1 <DECIMAL NUMERIC PROGRAM DATA >

<DECIMAL NUMERIC PROGRAM DATA > is program data for sending numeric contents expressed
in decimal notation. There are 3 formats for expressing decimal numbers: integer format, fixed point
format and floating point format. The MP1763B does not use the floating point format.

The program data transmission in the integer or fixed point formt used in the MP1763B is described.
Note : The data will processed at any data format in the manner described below.
® Rounding off of numeric elements

When a device receives <DECIMAL NUMERIC PROGRAM DATA > elements with more digits
than it can handle, it ignores the sign and rounds it off to the nearest whole number.

® Outside-range data

When a <DECIMAL NUMERIC PROGRAM DATA > element is outside the permissible range for
the program header, execution error is reported.

(1) Integer format- NR1 transmission

In the diagram below, an integer NR1, i.e. a decimal number which does not contain a floating point or
exponential expression, is transmitted.
j <white

<digit> \L > space>

Zeros can be inserted at the beginning. — 005, 4+ 000045

A

\

Spaces cannot be inserted between a + or — sign and a number — +5, + A5 (X)
X: not allowable

Spaces can be inserted after a number. - +5AAA

The + sign is optional. - +5,5

Commas may not be used to separate digits — 1,234,567 (X)

5-18

SECTION 5 LISTENER INPUT FORMAT

(2) Fixed point format - NR2 transmission

The example below shows the transmission of NR2, a real number with no integer or exponential
-expressions having digits after the decimal point. The syntax diagram consists of an integer part, the
decimal point and a fraction part.

<«4— Integer part ———-————N————r{— Fraction part —p
Decima

point

ol
-

<white
space
character>

. ‘ <digit>
/ —~—

J[)
/ b <digit>

’ / «
/ / . /
/ Z__The (gectmal " ’
4 . . .
A The value in the BS'{,‘m’RtagdrP P The value in the fraction part

integer part

may be omitted.
may be omitted.

The numeric expression of the integer format is applied to the integer part.

No spaces may be inserted between numbers and the decimal point = +753A.123 (X)
X: not allowable

Spaces may be inserted after the fraction part - +753.123AAAA

There need not be any numbers before the decimal point — .05

A + or — sign can be inserted before the decimal point - +.05, -.05

A number can end in a decimal point = 12.

5-19

SECTION5 LISTENERINPUT FORMAT

5.3.2 <NON-DECIMAL NUMERIC PROGRAM DATA>

<NON-DECIMAL NUMERIC PROGRAM DATA > is program data for sending hexadecimal value
data as non-decimal numeric data. The non-decimal data always begins from the # mark. The non-
decimal data is defined as a coded syntax diagram shown in the below. When strings except for a
specified character string is sent,a command error generates. '

,@ er\ | <digit>
NG _/ | orator

Characters followed by #H are received at the device as an unsigned hexadecimal numeric. Characters
in the () means corresponding decimal numbers.

Example:
The program message which sets the data input timing voltage to GND.
#HABCD (43,981D)

5-20.

SECTION 6
TALKER OUTPUT FORMAT

Two types of data messages are transmitted between the controller and a device via the system
interface when the bus is in the data mode, i.e. when the ATN line is false: program messages and
response messages. This section describes the format of the response messages sent by a talker device

to the controller.

Control commands by ANRITSU PACKET V series personal computers are applied for formats and
use examples in this section.

TABLE OF CONTENTS
6.1 Syntax Differences Between Formats of Listener Input and Talker Output 6-4
6.2 Functional Elements of Response Messageoiiiiiiiiiiiiiniiinennnn. 6-5
6.2.1 <TERMINATED RESPONSE MESSAGE> 6-5
6.2.2 <RESPONSE MESSAGE TERMINATOR> e 6-6
6.2.3 <RESPONSE MESSAGE > ... e e 6-7
6.2.4 <RESPONSE MESSAGE UNITSEPARATOR> i, 6-8
6.2.5 <RESPONSE MESSAGE UNIT > ... e i 6-8
6.2.6 <RESPONSE HEADER SEPARATOR> e 6-9
6.2.7 <RESPONSE DATASEPARATOR> e 6-9
6.2.8 <RESPONSE HEADER> e 6-9
6.2.9 < RESPONSE DAT A > e 6-11

6-1

6-2

(Blank)

SECTION6 TALKER OUTPUTFORMAT

Response messages convey measured results, setting conditions and status information. Some
response messages have a header, and others not.

The diagram below, as an example, shows each response message is sent from a device to a controller as
an ASCII character string with a header for a data output termination voltage query message unit
DTM? and a clock output termination voltage query message unit CTM?.

< TERMINATED RESPONSE MESSAGE >
A
-
<RESPONSE MESSAGE > <RESPONSE MESSAGE TERMINATOR >
Listener DTM @ ; CTM @ <NL> | oviee
(controller) : (device)
3 X R
Address 3
<RESPONSE MESSAGE UNIT > <RESPONSE MESSAGE UNIT SEPARATOR > <RESPONSE MESSAGE UNIT > <{NL>
DIM_ @ ; CTM_@ \
<RESPONSE HEADER > <RESPONSE HEADER > NL
DTM CTM
< RESPONSE HEADER SEPARATOR > < RESPONSE DATA > < RESPONSE HEADER SEPARATOR > <RESPONSE DATA >
SP Q \ sp @\
<response mnemonic> <character response data> < character response data >
DTM 1))]
The program for the above would be as follows:
100 WRITE @1@3:"DTM? "! Data output termination voltage query message request
110 READ @103: A$! When the terminator NL is detected, the response message DTMA@ is read into
9
AS.
120 WRITE @103:"CTM? "! Clock output termination voltage query message request
130 READ @1@3: B$! Clock output termination volgage response message CTMAQ
gag 9

As for program messages, response messages are made up of a sequence of functional elements which
are the minimum unit capable of expressing function. The upper-case alphabetic character items
inside < > in the diagram above are examples of functional elements. Functional elements can be
further subdivided into coded elements. The lower-case alphabetic character items inside < > in the
diagram above are examples of coded elements. Thus, the way of expressing items on functional syntax
diagrams is the same for talker and listener.

The following pages explain the talker device output format focussing on the differences between it and
the listener device input format.

SECTION6 TALKER OUTPUT FORMAT

6.1 Syntax Differences Between Formats of Listener Input and Talker Output

The differences in syntax between listener device input and talker device output formats are:

¢ Listener format

There is flexibility in writing programs to make program messages (from the controller) easy to
receive by the listener. Consequently, program messages can perform the same function despite
differences in message description between them. For example, the free insertion of <white
spaces> in separators and terminators makes programs easy to read.

o Talker format

Strict rules govern the syntax of response messages sent from device to controller to make them easy
to receive. Thus, in contrast to the listener format, there is only one notation for each function in the

talker format.

The table below summarizes the differences between the listener and talker formats. Space in the table

means <white space>.

Talker-output response

Only upper-case for header.

Item Listener-input program message syntax message syntax
Characteristics (Flexible) (Strict)
Alphabetic characters Either upper or lower-case characters can be used. Upper-case only

Before/ after E in

Optional space(s) + E/e + optional space(s)

Upper-case E only

separtor and before a temrinator.

NR3 exponent Not supported by the MP1763B.

+ signin NR3 Can be omitted. .
exponent Not supported by the MP1763B. Cannot be omitted
< white space> Two or more spaces can be placed before or after a Not used

Message unit

@ Header with program data
@ Header without program data

@ Data with header
@ Data without header

Unit separator

Optional space(s) + semicolon

Semicolon only

Space before header

Optional space(s) + header

Header only

Header spearator

Header + 1 or more spaces

Header + one $20*

Data separator

Optional space(s) + comma + optional space(s)

Comma only

Terminator

Optional space(s) + any of NL, EOl or NL + EOI

NL + EOI

* ASCII code byte 20 (decimal 32 = ASCII character SP: space)

6-4

SECTION 6 TALKER OUTPUT FORMAT

6.2 Functional Elements of Response Message

Response messages output by the talker are accepted by the controller once they have been terminated
by the NL END signal. The following describes the functional elements of the response message.

As the rules for syntax diagram notation are the same as for program messages, refer to Section 5 for
the details. The explanation of functional elements and encoded elements has been omitted where it
would overlap with that for program messages. Refer to Section 5 as required.

6.2.1 <TERMINATED RESPONSE MESSAGE >
A <TERMINATED RESPONSE MESSAGE > is defined as follows:

<RESPONSE
MESSAGE
TERMINATOR>

Q >| <RESPONSE MESSAGE > >

A <TERMINATED RESPONSE MESSAGE > is a data message, containing all the functional
elements required for transmission, sent from a talker device to the controller.

A <RESPONSE MESSAGE TERMINATOR > is attached to the end of a <RESPONSE MESSAGE >
to terminate its transmission.

Example: A <TERMINATED RESPONSE MESSAGE > comprising 2 message units -

<TERMINATED RESPONSE MESSAGE >

Vs -~

< RESPONSE MESSAGE > < RESPONSE MESSAGE TERMINATOR >
Listener O e T T Talker
(controller) [} DTM @;CTM @<NL> (device)

K B e e B L S s R o
%
Address 3

Functional elements

6-5

SECTION6 TALKER OUTPUTFORMAT

6.2.2 <RESPONSE MESSAGE TERMINATOR >
A <RESPONSE MESSAGE TERMINATOR > is defined as follows.

A <RESPONSE MESSAGE TERMINATOR > is placed after the last <RESPONSE MESSAGE
UNIT > to terminate a fixed length sequence consisting of one or more <RESPONSE MESSAGE
UNIT > elements.

Executing the following statements listed below for NL and END at the start of a program outputs
terminator LF together with the EOI signal, to indicate the END, when the last data byte is
transmitted.

e For NL(LF): TERM IS CHR$(10)

e For END (EOI): EOI ON

Example: To read the current center frequency setting

10 LET ADR=101

20 TERM IS CHR$(1@) | LF (new line) is assigned as the terminator code.

. en the last data byte is transmitted, the EOl signal is sent which makes the ine
30 EOI ON! When the last data byte i itted, the EOI signal i hich makes the EOI li
true

40 WRITE Q@ADR:"DTM?"! Query to read the data output termination voltage

50 READ GADR:A$! EOIsignal terminates the reading of response data
60 PRINT A$
70 END

6-6

SECTION 6 TALKEROUTPUTFORMAT

6.2.3 <RESPONSE MESSAGE > A
A <RESPONSE MESSAGE > is defined as follows.

<RESPONSE
MESSAGE UNIT -
SEPARATOR>

> <RESPONSE MESSAGE UNIT> >

A <RESPONSE MESSAGE > consists of one <RESPONSE MESSAGE UNIT > element or a
sequence of many <RESPONSE MESSAGE UNIT > elements. A <RESPONSE MESSAGE UNIT >
element is a single message sent from a device to the controller. A <RESPONSE MESSAGE UNIT
SEPARATOR> element is used to separate <RESPONSE MESSAGE UNIT > elements.

Example:

Attaches the DTM and CTM headers to the data output termination voltage and clock output
termination voltage, and transmits them in 1- character fixed format.

<RESPONSE MESSAGE >

AR
DIMAD : CTMAB D

<RESPONSE MESSAGE UNIT > <RESPONSE MESSAGE UNIT SEPARATOR > <RESPONSE MESSAGE UNIT >

6-7

SECTION6 TALKER OUTPUT FORMAT

6.2.4 <RESPONSE MESSAGE UNIT SEPARATOR >
A <RESPONSE MESSAGE UNIT SEPARATOR > is defined as follows.

A semicolon (;) is used as the <RESPONSE MESSAGE SEPARATOR > to separate a sequence of
<RESPONSE MESSAGE UNIT > elements that is to be transmitted as one message.

6.2.5 <RESPONSE MESSAGE UNIT >
A <RESPONSE MESSAGE UNIT > is defined as follows.

<RESPONSE
DATA
SEPARATOR>

<RESPONSE
HEADER
SEPARATOR>

<RESPONSE
HEADER>

<RESPONSE DATA>

<RESPONSE
DATA
SEPARATOR>

N\ >| <RESPONSE DATA > /

A <RESPONSE MESSAGE UNIT > consists of 2 basic types of syntax. The first is a response message
with a header which returns the results of processing data on settings made by program messages. The
second is a response message unit without a header which returns only measured results.

6-8

SECTION 6 TALKER OUTPUT FORMAT

6.2.6 <RESPONSE HEADER SEPARATOR>
A <RESPONSE HEADER SEPARATOR > is defined as follows:

ey .
_/

The <RESPONSE HEADER SEPARATOR > is a space after the <RESPONSE HEADER > to
separate it from <RESPONSE DATA>. The space, SP, is ASCII code byte 20 (decimal 32).

There is always one space to separate the header frdm the data in a response message with a header.
This space indicates the end of the header and the start of the data.

6.2.7 <RESPONSE DATA SEPARATOR>
A <RESPONSE DATA SEPARATOR> is defined as follows:

r\:/ >

A <RESPONSE DATA SEPARATOR> is used to separate <RESPONSE DATA > items when more
than one is output.

6.2.8 <RESPONSE HEADER>

With the exception of the following three points, the format of the <RESPONSE HEADER > is the
same as that described for the <COMMAND PROGRAM HEADER > in paragraph 5.2.8.

(D The <response mnemonic> has a stipulated character set stating that alphabetic characters must
be upper-case. Otherwise it is the same as the <program mnemonic> in paragraph 5.2.8.

@ Spaces can be placed in front of a program header but cannot be placed in front of a response header.

® More than one space may be placed after a program header but only one may be placed after a
response header.

All aspects of the <RESPONSE HEADER > up to the <response mnemonic> are shown on the next
page.

(F For characters used in <response mnemonic>, alphabetic characters are always upper-case characters and other
characters are used in the same manner as <response mnemonic>.)

6-9

SECTION6 TALKER OUTPUTFORMAT

Element Function
RESPONSE The header indicates the function of the response data. Its meaning is shown by a
HEADER

<response mnemonic> which is a combination, of up to 12 characters, of upper-
case alphabetic characters, numbers and underlines starting with an upper-case
alphabetic character.

<simple
3> response
header>

<common
response
header>

Y

1) A <simple response header > is defined as follows:

<response
mnemonic>

2) A <common response header > is defined as follows:

<response
mnemonic>

3) A <response mnemonic> is defined as follows:

-

<upper-case

alpha>1t
<upper-case K—\
—— > >
alpha>t U
<digit>

’ s

t<upper-case alpha> ASCII code bytes 41 to 5A (decimal 65 to 90 = upper-case alphabetic A to Z)

6-10

SECTION6 TALKEROUTPUTFORMAT

6.2.9 <RESPONSE DATA>

The diagram below shows the 11 types of response data. The MP1763B supports the response data in
the shaded ovals below. The type of response data to be returned is determined by the query message.

RESPONSE DATA>

<NR1 NUMERIC
RESPONSE DATA >

<NR2 NUMERIC
RESPONSE DATA>

<NR3 NUMERIC
RESPONSE DATA>

NUMERIC RESPONSE DATA>

<OCTAL NUMERIC
RESPONSE DATA>

<BINARY NUMERIC
RESPONSE DATA >

<STRING
RESPONSE DATA >

<DEFINITE LENGTH
ARBITRARY BLOCK RESPONSE DATA>

<INDEFINITE LENGTH
ARBITRARY BLOCK RESPONSE DATA> ¥

<ARBITRARY ASCII
RESPONSE DATA >t

fflfllflff[

T Both <INDEFINITE LENGTH ARBITRARY BLOCK RESPONSE DATA > and <ARBITRARY ASCII RESPONSE DATA >
are terminated by an NLAEND in their own last data byte. :

6-11

SECTION6 TALKER OUTPUTFORMAT

Element

Function

(1) CHARACTER
RESPONSE
DATA

<Example>
' AAT2__AUTO
AAT2__MANUAL

(2) NR1 NUMERIC
RESPONSE
DATA

<Example>
123
+123
—1234

(3) NR2 NUMERIC
RESPONSE
DATA

<Example>
12.3
+12.34
—12.345

(4) NR3 NUMERIC
RESPONSE
DATA

<Example>
12.3E + 4
+12.34E - 5
—12.345E + 6

® No lower-case
character is
allowed for E.

® Spaces before
and after E are
not allowed.

® “+”in exponent
part cannot be
omitted.

® “+7”in mantissa
part can be
omitted.

Data composed of character strings common with <response mnemonic>.
Thus the beginning of the character string is always an upper-case alphabetic
character and the character string length is limited to 12 characters. Numeric
parameters are not suitable for being used.

<response
mnemonic >

—_—

Integer data, i.e. decimal values without a decimal point or exponents.

<digit>

-

Fixed-point data, i.e. decimal values without integers or exponents.

<digit> <digit>

-

Floating-point data, i.e. decimal values with exponent digits.

<digit> <digit>

L
>

<digit>

6-12

SECTION6 TALKEROUTPUT FORMAT

Element Function
(5) HEXADECIMAL | Hexadecimal numeric data.

NUMERIC

RESPONSE

DATA
<Example> —>
#HABC123
#H2DC3 __,@__,GD i ()L
#H8301

~(D)

Nl <digit> |—

(6) OCTAL Octal numeric data.
NUMERIC 4 -

RESPONSE
DATA
<Example> r"*@ﬁ
#Q37
#Q26703 ,_,@_
#Q30562

@@

Y

(7) BINARY Binary numeric data.
NUMERIC <

RESPONSE

DATA | —
<Example> _._>C.Dﬁ
#B011101 ___,@_,

#B1011

#B1011 ‘—>®4

6-13

SECTION6 TALKER OUTPUTFORMAT

Element Function
(8) STRING All the ASCII 7 bit codes are available. Both ends of the character string are
RESPONSE always enclosed by double quotation marks. Double quotation marks within a
DATA character string are used as two consecutive quotations composed of identical
ones. They are suitable for outputting texts to a printer or CRT since CRs, LF's
<Example> and spaces are available.
“This is a text” <
“Say,” “Hello” “.” 4 ‘
<inserted” >
-0 -
<non-double
quote char>
\ <
(9) DEFINITE Fixed-length 8 bit binary block data. It is suitable for transferring a large
LENGTH amount of data, 8 bit extended ASCII codes, non-displayed data and so on.
ARBITRARY < <
BLOCK
RESPONSE
DATA —»@—» <non-zero > <digit> >| <BOIt
digit> data byte>
<Example>
Transferring
11256099D in >
4 byte length
#1400ABC123
(10) INDEFINITE Undefined-length 8 bit binary block data. So, the first data is preceded with
LENGTH #@. The last data is terminated by NLAEND.
ARBITRARY <
BLOCK
RESPONSE
DATA __)@__> <8-bit @
data byte>
<Example>
Transferring —
250, —50,120, ... >
in undefined
length
l
#0FF06FFCE0078

6-14

SECTION 6 TALKER OUTPUTFORMAT

Element

Function

(11) ARBITRARY
ASClI
RESPONSE
DATA

<Example1>
<ASCII Byte >
<ASCII Byte>
NLAEND

<Example2>
NLAEND

ASCII data bytes (excluding NL characters) sent without separating them; so,

the last data is terminated by NLAEND.

-

<ASClI
data byte >

Y

Oa>

6-15

SECTION6 TALKER OUTPUTFORMAT

(Blank)

6-16.

SECTION 7
COMMON COMMANDS

This section describes the common commands and common query commands specified in the IEEE
488.2 standard. These common commands are not the bus commands used in interface messages. Like
device messages, common commands are a type of data message used in the bus data mode, i.e. when
the ATN line is false. They can be used for all measuring instruments, including those made by other
companies, as long as they conform to the IEEE 488.2 standard. IEEE 488.2 common commands must
start with an k.

Control commands by ANRITSU PACKET V series personal computers are applied for formats and
use examples in this section.

TABLE OF CONTENTS
7.1 Classification by Function of Common Commands Supported by the MP1763B 7-3
7.2 The Classification of Commands Supported and the Reference 7-4

7-1

7-2

(Blank)

SECTION7 COMMON COMMANDS

7.1 Classification by Function of Common Commands Supported by the MP1763B

The table below shows the classification by function of the IEEE 488.2 common commands supported
by the MP1763B. Supported commands are listed on the following pages in alphabetical order.

7-3

SECTION7 COMMON COMMANDS

7.2 The Classification of Commands Supported and the Reference

Commands to be supported for MP1763B shown on the previous page are described for each function
group in the table below. Each command is described in alphabetic order from the next page.

Group Function Mnemonic
System data | Data specific to each device connected to the GPIB system, e.g. *IDN?
manufacturer, model, serial number, ete.
Internal Device internal control: *RST
operation @ Resetting device in level 3 (See Section 4) *TST?
@ Device self testing and error detection
Synchronization | Synchronization of device to controller by: *0PC
® Waiting for a service request *0PC?
@ Waiting for a response from the device output queue *WAT
® Performed by forcing sequential execution.
Status and A status byte consists of a status summary message. The *CLS
event summary bits of the message are supplied by the standard event *ESE
register, the output queue and the extended event register or 5
extended queue. Four commands and five queries are available to *ESE?
set or clear the data in the registers and queues, to enable or *ESR?
disable them and to obtain the settings status of the registers. *PSC
*PSC?
*SRE
*SRE?
*STB?
Device trigger | Defines the commands to be executed when the IEEE 488.2 GET | % TRG

bus command is received by a device.

7-4

*CLS Clear Status Command
(Clear status byte register)

M Syntax
*CLS

M Example

30 WRITE @1@3:"*CLS"
40 WRITE @103:"DTMA®;CTMA@; *CLS"

M Explanation

The **CLS common command clears all status data structures (i.e their event registers and queues)
except for the output queue and its MAV summary messages. It also clears the summary messages
corresponding to these structures.

In the example below, the output queue and its MAV summary messages are also cleared.

30 WRITE @1@3:"DTMAG;CTMAB"
49 WRITE @1@3:"*CLS;DTM?"

That is to say, if a *CLS command is sent after a <PROGRAM MESSAGE TERMINATOR > or
before <KQUERY MESSAGE UNIT > elements, all status bytes are cleared. This command also
clears all unread messages in the output queue.

*CLS has no effect on settings in enable registers.

register

Service Request generated ----=
' Extended event
: register or queue (Not used by theMP17638)
1
7 < /\ ! Standard event
l
]

MSS 6 RQS fe-f----i-.

ESB

A

- Output queue

A

A

Extended event
register or queue

(Queue not used by theMP1763B)

Extended event
register or queue

(Queue not used by theMP1763B)

Status summary
message

Extended event
register or queue

(Queue not used by the MP1763B)

Extended event
register or queue

(Not used by the MP1763B)

Status byte register

7-5

*#ESE Standard Event Status Enable Command
(Sets or clears the standard event status enable register)

M Syntax

s}k ESE <HEADER SEPARATOR> < DECIMAL NUMERIC PROGRAM DATA >

In this format:

<DECIMAL NUMERIC PROGRAM DATA > = Value rounded to an integer from 0 to 255 (Binary
weighted with a base value of 2)

B Example
WRITE @1@3:"*ESE 2@"! setsbits2and4ofenable register

H Explanation

The program data is the sum of weighted bit-digit values when the weighted value for bits to be
enabled are selected from among the values2°=1,2!'=2,2?=4, 2°=8,2'=16,25=232,26 =64 or
27=128; corresponding to the enable register bits 0,1, 2, 3, 4, 5, 6 or 7. The value of bits to be
disabled is 0.

[t e T

iTo bit 5 of the status byte i~ Logical OR
iregister for the ESB (Event 1
i . i A A A A A 4
:Summary Bit) !
D A PP J
disabled =0, enabled=128(227)| 7 &)=< 7 |roweron
disabled =0, enabled =64 (26) 6 f& < 6 |user request (Not used in MP1763B)
disabled =0, enabled=32 (25| 5 @ < 5 |command error
disabled =0, enabled=16 (24| 4 ®‘ 4 |Execution error
disabled =0, enabled=8 (23)| 3 [&\ < 3 | Device-dependent error
disabled =0, enabled=4 (22)| 2 f&\‘ 2 Query error
disabled =0, enabled=2 (21) | 1 @: 1 e veed in MP17638)
disabled =0, enabled=1 (20| 0 P> &\< 0 | operation complete
Standard event status Standard event
enable register status register

7-6

*#ESE? Standard Event Status Enable Query

(Returns current value of standard event status enable register)

M Syntax
*ESE?

H Example
20 is the response if *¥ESE? is sent after executing %¥ESE 20

M Explanation

Returns NR1, the value of the standard event status enable register

M Response message
NR1=0~ 255

7-7

**ESR?: Standard Event Status Register Query

(Returns the current value in the standard event status register)

M Syntax

*ESR?

M Example

30 WRITE @103:"*ESR?"
49 READ @1@3:STEVET
50 PRINT STEVET

H Response Message
NR1=0 to 255

B Explanation

The current value of the standard event status register is returned by NR1. NR1 is the total of
weighted bit-digit values of bits (enabled by the standard event status enable register) which are
selected from amongs the values 2°=1,2'=2,2%=4,23=8,2'=16,2°=32,2°=64 or 2"=128:
corresponding to the standard event status register bits 0, 1,2, 3,4, 5,6 or 7.

This register is cleared when the response is read (e.g. line 40).

Prom e Bl

iTo bit 5 of the status byte

iregister for the ESB (Event

Summary Bit) -

!
SR AP

Logical OR
i A A A A A A A

disabled =0, enabled =128(27)

disabled =0,
disabled =0,
disabled =0,
disabled =0,
disabled =0,
disabled =0,
disabled =0,

7-8

enabled =64 (26)

enabled =32 (25)

enabled =16 (29)

enabled=8 (23)

enabled=4 (22)

enabled=2 (21)

enabled=1 (20)

alNfwlihlON

Standard event status
enableregister

0

Power on

User request (Not used in MP1763B)
Command error

Execution error

Device-dependent error

Query error

Request for bus control
(Not used in MP1763B)

Operation Complete

Standard event
status register

*IDN? Identification Query
(Returns the manufacturer name, model name etc. of the product.)

B Syntax
*IDN?
B Example
30 WRITE @103:"*kIDN?"
4@ READ @103:IDENS$! Stores names of manufacturer, model, etc.

M Explanation

Returns manufacturer’s name, model name, @.firmware level

l——>ﬂﬂ@1

MP1761B

ANRITSU

If an *kIDN? common query is sent to a device when the manufacturer is Anritsu, the model is

MP1763B, and the firmware version is 1; a response message comprising the four fields shown above
is returned.

O Field1 Manufacturer’s name (Anritsu)
@ Field2 Model name (MP1761B)

@ Field3 (usually @)

@® Field4 Firmware version

B Response message

A Response message comprising the four fields above separated by commas is sent by
<ARBITRARY ASCII RESPONSE DATA>.

<field1>, <field 2>, <field 3>, <field 4>

For the example above,
ANRITSU,MP1761B,0,0001

The total length of a response message is =72 characters

Note
Even if the real model name is MP1763B, a response message is MP1761B.

7-9

*OPC Operation Complete Command
(Sets the status of bit 0 of the standard event status register when device operation is

completed)

N Syntax
*0PC

B Example

WRITE @103:"*O0PC"

M Explanation

Sets the status of bit 0, i.e. the operation complete bit, of the standard event status register when all
pending operations of the selected device have been completed. This is an overlap command.

Status byte register

7-10

Logical OR
A A A) A A A
7 &)< 7 |roweron
6 @ e G |Userrequest
(Not used in MP1763B)
5 \f& <«—— 5 |commanderror
4 &)= 4 |Execution error
3 /&\‘ 3 Device-dependent error
D
2 \&J{ 2 Query error
1 /&\ 1 Request for bus control
\\J‘ (Not used in MP1763B)
enabled=20} O *C&/‘ 0 |operation complete
Standard event status Standard event status register
enable register
1 -+ - Qutput queue

*OPC? Operation Complete Query
(Sets 1 in the output queue to generate a MAV summary message when device operation has
been completed)

B Syntax
*0PC?

B Example
WRITE @1@3: "*QPC?"

H Explanation

When all pending operations of the selected device have been completed, sets 1 in the output queue
and waits for the MAV summary message to be generated.

M Response message
A lisreturned by <NR1 NUMERIC RESPONSE DATA >.

7-11

*PSC Power-on Status Clear Command
(Specifies whether status enable registers are cleared at power-on, or not.)

M Syntax
*PSC <HEADER SEPARATOR><DECIMAL NUMERIC PROGRAM DATA>

In this format:

<DECIMAL NUMERIC PROGRAM DATA > =0 : not cleared
Numbers in range of — 32767 to 32767 : cleared

B Example
WRITE @103:"*PSC 0;*SRE 32;*ESE 128"! notcleared and SRQ ison

M Explanation

The *PSC command specifies whether the three enable registers of service request, standard event
status, and parallel poll in status are cleared at power-on, or not.

A value in the <DECIMAL NUMERIC PROGRAM DATA > field controls the logical state of the
power-on status flag. When it is rounded to 0, the flag is set to false, so the enable registers are not
cleared. When the *PSC 0 isissued, it enables the device to generate the SRQ at power-on. In the
above example, the power-on event is reported to the controller.

When the value in the <DECIMAL NUMERIC PROGRAM DATA > field is rounded to an integer
other than 0 that is in range of —32767 to 32767, the flag is set to true, so the enable registers are
cleared. When the *kPSC 1 isissued, it enables the device to clear the registers but not to generate
the SRQ.

When the value in the <DECIMAL NUMERIC PROGRAM DATA > field is rounded to an integer
that is out of range of — 32767 to 32767, the execution error is generated.

7-12

*PSC? Power-on Status Clear Query
(Returns the power-on status flag state)

M Syntax
*PSC?

M Example

30 WRITE @1@3:"*PSC?"
4 READ:POWF

M Explanation

When the *PSC? common query is issued, 1 is returned when the power-on status flag is true, and @
is returned when it is false.

M Response message

NR1=1 (Power-on status flag is true.) @ (Power-on status flag is false.)

7-13

*RST Reset Command
(Resets (initializes) device in level 3)

B Syntax
*RST

B Example
WRITE @103:"*RST" Resetsdevicesinlevel 3

M Explanation
The *kRST command resets a device in level 3. (See Section 4)
The items that are reset in level 3 are as follows.

 The functions and conditions specific to a device are reset to a known initial state regardless of the
settings up to that point. (See Section 4 for MP1764A initial states)

@ Macro operation is inhibited and the device can no longer receive macros. And, macro definition
is reset to the state designated by the system designer.

® The device is put into OCIS (Operation Complete Command Idle State). As a result, the operation
complete (end) bit cannot be set in the standard event status register.

@ The device is put into OQIS (Operation Complete Query Idle State). As a result, the operation
complete bit cannot be set in the output queue. The MAYV bit is cleared.

The *RST command has no effect on the following.
D The state of the IEEE 488.1 interface

@ Device address

® Output queue

@ Service request enable register

® Standard event status enable register

® Power-on-status-clear flag setting

7-14

*SRE Service Request Enable Command
(Sets status of bits in the service request enable register)

M Syntax

*SRE <HEADER SEPARATOR > < DECIMAL NUMERIC PROGRAM DATA >

<DECIMAL NUMERIC PROGRAM DATA > = Values rounded to an integer from 0 to 255 (binary
weighted with a base value of 2)

M Example

WRITE @1@3:"*SRE 16"! Setsbit 4 of the enable register

M Explanation

The program data is the sum of weighted bit-digit values when the weighted value for bits to be
enabled are selected from among the values 2°=1, 2! =2, 22=4,2%=8,2=16,2°=32 or 2"=128:
corresponding to the service request enable register bits 0, 1, 2, 3, 4, 5, 6 or 7. The value of bits to be

disabled is 0.

disabled =0, enabled=128(27)

Not used
disabled =0, enabled=32 (25)
disabled =0, enabled =16 (29)
disabled =0, enabled=8 (23)
disabled =0, enabled=4 (22)
disabled =0, enabled=2 (21)

Service Request

I Generation [~~"7°77 H
i Logical OR L~ —1 y : o

1 H g |
A A A A A T A : A Lo
| | w
U ’\&/‘ E 7 | Notused E ‘é’
>IMss 6 RQS |<------ 1>
5 /\@‘ 5 | esg <—— g
4 (&)= 4| vy ———E
3 \/&\‘ 3 | esB(ERROR) <—— :
2 O 2 | EsB(END) =— 3
1 f&\‘ 1 | Notused <-——— O
0 *@‘ 0 | Notused v

disabled =0, enabled=1 (29)

Service request enable register

Status byte register

7-15

*%SRE? Service Request Enable Query
(Returns the current value of the service request enable register)

M Syntax
*SRE?

M Example
A 16 is sent in response if ** SRE? is sent after executing *kSRE 16.

M Explanation

NR1, the value of the service request enable register, is returned.

H Response message
As NR1 (bit 6 : RQS bit) cannot be set, NR1 = 0 to 63 or 128 to 191)

7-16

*#STB? Read Status Byte Command
(Returns the current values of status bytes including MSS bits)

W Syntax

*STB?

H Example

30 WRITE @1@3:"*STB?"
49 READ @1@03:STBV
50 PRINT STBV

H Explanation

The *STB? query returns the total of the binary weighted values of the status byte register and of
the MSS summary message with <NR1 NUMERIC RESPONSE DATA>.

M Response message

The response message is a <INR1 NUMERIC RESPONSE DATA > integer in the range 0 to 255
representing the total of the binary weighted values of the bits in the status byte register. Status
byte register bits 0 to 5 and 7 are weighted to 1, 2, 4, 8, 16, 32 and 128, respectively, and the MSS
(Master Summary Status) bit to 64. MSS message indicates that a request has at least one cause.

Service Request
Generation

> 1
i Logical OR -1 ? § %
A A A A A T | — I

1 |
disabled =0, enabled=12827) | 7 ;é()ezr—— 7 | Notused E £
Not used /L b>1MVISS 6 RQS |<------ 4 >
disabled =0, enabled=32 (25)] 5 /\\&J< 5 | esp «——— g
disabled =0, enabled=16 (24) | 4 (&)= 4 | v «—— 5
disabled =0, enabled=8 (23)| 3 @y< 3 | ESB(ERROR) <—— :
disabled =0, enabled=4 (22)]| 2 @: 2 | EsB(END) <— 3
disabled =0, enabled=2 (21)] 1 f&\‘ 1 Not used S
disabled =0, enabled=1 (20| 0 p(&)=< 0 | Notused <

Service request enable register Status byte register

7-17

The table below shows the conditions for the MP1763B’s status byte register.

Bit Bit weight | Bitname Status-byte-register conditions

7 128 —_ 0 = Not used

6 64 MSS 0 = Service not requested 1 = Service requested

5 32 ESB 0 = Event status not generated 1 = Event status generated |
4 16 MAV 0 = No data in output queue 1 = Data in output queue

3 8 ESB(ERROR) | 0 = Event status not generated 1 = Event status generated

2 4 ESB(END) |0 = Event status not generated 1 = Event status generated

1 2 —_— 0 = Not used

0 1 —_ 0 = Not used

7-18

*TRG Trigger Command .
(The same function as that of IEEE 488.1 GET-Group Execute Trigger-bus command)

M Syntax
*TRG?

M Example
WRITE ©1@3:"*TRG"

B Explanation

The *TRG common command has the same function as the IEEE 488.1 GET — Group Execute
Trigger-bus command. The MP1763B does not support the *DDT command.

With the MP1763B, *k TRG common command has no function.
WRITE @103:"*TRG"

*TST? Self-test Query

(Returns the results of error present/absent in the self-test)

H Syntax
*TST?

B Example

30 WRITE @1@3:"*TST?"
49 READ @1@3:TEST
5@ PRINT TEST

H Explanation

The ¥ TST? query executes the self-test of the internal cirucit in device(s). The test result is setin
the output queue. Data in the output queue indicates whether or not the test has been completed
without error occurrence. Opeator intervention is not required to execute the self-test.

When the power is turned on, the MP1763B reports the self-test result.

B Response message

The response message is sent by <NR1 NUMERIC RESPONSE DATA >. The data range is —
32767 to 32767.

NR1=0 Indicates no errors

NR1=@ Indicates that errors have occurred

7-19

*WAI Wait-Continue Command
(Forces the next command to wait while the device is executing a command)

M Syntax
*WAI

B Example
WRITE ©1@3:"*xWAI"

M Explanation
The *kWAI common command executes a overlap command as a sequential command.

The overlap command is a command or query that is sent by the controller and allows the next
command to be executed even while the device is executing something.

While the device is executing a command, executing the }kWAI common command after an overlap
command forces the next command to wait and allows it to be executed after the current command
has been executed. This action is the same as that of sequential command.

7-20.

SECTION 8
STATUS STRUCTURE

This section describes device status reports and their data structure as defined in the IEEE 488.2
standard and explains the techniques for synchronizing the controller and devices.

In order to obtain more detailed status information, the IEEE 488.2 standard has more common
commands and common queries than the IEEE 488.1 standard.

Refer to Section 7 for a detailed explanation of these common commands and queries.

Control commands by ANRITSU PACKET V series personal computers are applied for formats and
use examples in this section.

TABLE OF CONTENTS
8.1 IEEE 488.2 Standard Status Model 8-4
8.2 Status Byte (STB) Register ...ttt e e e 8-6
8.2.1 ESB and MAV summary Messagesceeeetmmmnnnne et eaanaaann. 8-6
8.2.2 Device-dependent sUummary Messagesuuuuuineeeeeeneneneaaaanennn. 8-7
8.2.3 Reading and clearingthe STBregister iiiiiiiiiiiiii... 8-8
8.3 ENabling SRQ ..ot e e 8-10
8.4 Standard Event Status Register e 8-11
8.4.1 Bitdefinition e 8-11
8.4.2 Queryerrordetails e 8-13
8.4.3 Reading, writing to and clearing the standard event status register 8-14
8.4.4 Reading, writing to and clearing the standard event status enable register 8-14
8.5 Extended Event Status Register i 8-15
8.5.1 Bit definition of END eventstatusregister 8-16
8.5.2 Bit definition of ERROR event statusregister, 8-18
8.5.3 Reading, writing to and clearing the extended event statusregister 8-20
8.5.4 Reading, writing to and clearing the extended event status enable register 8-20
8.6 Queue Model ... s 8-21
8.7 Techniques for Synchronizing Devices with the Controller 8-23
8.7.1 Enforcing the sequential execution i, 8-23
8.7.2 Waitforaresponse from theoutputqueue 8-24
8.7.3 Waitforaservicerequestt 8-25

8-1

8-2

(Blank)

SECTION8 STATUS STRUCTURE

The Status Byte (SB) sent by the controller is based on the IEEE 488.1 standard. The bits comprising it
are called a status summary message because they represent a summary of the current data contained
in registers and queues.

The following pages explain the status summary message and the structure of the status data that
constitutes the status summary message bits as well as techniques for synchronizing the devices and
controller, which use these status messages.

8-3

SECTION8 STATUS STRUCTURE

8.1 IEEE 488.2 Standard Status Model

The diagram below shows the standard model for the status data structure stipulated in the IEEE
488.2 standard.

:/@4—

@~
7o\

(&)<
~&J”

Power on(pon)

User request (URQ)

Command error (CME)

Execution error (EXE)

Device-dependent error (DDE)

Query error (QYE)

= INwlh~ljON
= |INlw|DlU|o|

———-)@‘4 Request for bus control (RQC)
0 _)@‘ 0 | operation complete (OPC)

enable register

status register

Standard event status l Standard event

y Y Y Y ¥ r
Logical OR
Service Request
R > Gvelneratiqon -
2 Logical OR 1 ? E Output queue
A A A A A ! !
A N :
7 (@< 7 |1 >
t>IMSS 6 RQS |<--+ o
wv
26 5 | ese<— 3
o\
(&= 4 | mave——--- >
< 3 | < 5
2 |< E
3
1 | <= w
0 |-= 2
Status ‘,;'
byte | bt
register :

Standard Status Model Diagram

8-4

SECTION8 STATUS STRUCTURE

The IEEE 488.1 status byte is used in the status model. This status byte is composed of 7 summary
message bits given from the status data structure. For creating the summary message bits, there are 2
models for the data structure - the register model and the queue model.

Register model

Queue model

The register model consists of the two registers used for recording
events and conditions encountered by a device. These two registers
are the Event Status Register and Event Status Enable Register.
When the results of the AND operation of both register contents is not
0, the corresponding bit of the status bit becomes 1. In other cases, it
becomes 0. And, when the result of their Logical OR is 1, the
summary message bit becomes also 1. If the Logical OR result is 0,
the summary message bit becomes 0 too.

The queue in the queue
model is for sequentially
recording the waiting status
values and data. The queue
structure is such that the
relevant bit is set to 1 when
there is data in it and 0 when
it is empty.

In IEEE 488.2, there are 3 standard models for status data structure - 2 register models and 1 queue
model - based on the register model and queue model explained above. They are:

O Standard Event Status Register and Standard Event Status Enable Register

@ Status Byte Register and Service Request Enable Register

® Output queue

Standard Event Status Register

Status Byte Register

Output Queue

The Standard Event Status
Register has the structure of the
previously described register
model. In this register, bits are set
for 8 types of standard event
encountered by a device, viz.

® Power on, @ User request,

® Command error, @ Execution
error, ® Device-dependent error,
® Query error, @ Request for bus
control and ® Operation complete.
The Logical OR output bit is
represented by Status Byte
Register bit 5 (DIO6) as a summary
message for the Event Status Bit
(ESB).

The Status Byte Register is a
register in which the RQS bit and
the 7 summary message bits from

the status data structure can be set.

It is used together with the Service
Request Enable Register. When
the results of the OR operation of
both register contents is not 0, SRQ
becomes ON. To indicate this, bit 6
of the Status Byte Register (DIO7)
is reserved by the system as the
RQS bit which means that there is
a service request for the external
controller. The mechanism of SRQ
conforms to the IEEE 488.1
standard.

The Output Queue has
the structure of the queue
model mentioned above.
Status Byte Register bit 4
(DIO5) is setas a
summary message for
Message Available
(MAYV) to indicate that
there is data in the output
queue.

8-5

SECTION8 STATUS STRUCTURE

8.2 Status Byte (STB) Register

The STB register consists of device STB and RQS (or MSS) messages. The IEEE 488.1 standard defines
the method of reporting STB and RQS messages but not the setting and clearing protocols or the
meaning of STB. The IEEE 488.2 standard defines the device status summary message and the Master
Summary Status (MSS) which is sent to bit 6 together with STB in response to an *STB? common

query.

8.2.1 ESB and MAV summary messages
The following is a description of the ESB and MAV summary messages.

(1) ESB summary messages

The ESB (Event Summary Bit) summary message is a message defined by IEEE 488.2, which is
represented by bit 5 of the STB register. This bit indicates whether at least one of the events defined in
IEEE 488.2 has occurred or not when the service request enable register is set so that events are
enabled after the final reading or clearing of the standard event status register. The ESB summary
message bit becomes true when the setting permits events to occur if any one of the events recorded in
standard event status register is true. Conversely, it is false if none of the recorded events occurs even
if events are set to occur.

(2) MAV summary messages

The MAV summary message is a message defined in IEEE 488.2 and represented by bit 4 in the STB
register. This bit indicates whether the output queue is empty or not. The MAV summary message bit
is set to 1 (true) when a device is ready to receive a request for a response message from the controller
and to 0 (false) when the output queue is empty. This message is used to synchronize the exchange of
information with the controller. For example, it can be used get the controller to wait till MAV is true
after it has sent a query command to a device. While the controller is waiting for a response from the
device, it can process other jobs.

Reading the output queue without first checking MAV will cause all system bus operations to be
delayed until the device responds.

8-6

SECTION8 STATUS STRUCTURE

8.2.2 Device-dependent summary messages

The IEEE 488.2 standard does not specify whether bits 7 (DIO8) and 3 (DIO4) to 0 (DIO1) of the status
byte register are used as status register summary bits, or used to indicate that there is data in a queue.
These bits can be used as device-dependent summary messages.

Device-dependent summary messages have the respective status data structures of the register model
or the queue model. Thus, the status data structure may be either the register to report events and
status in parallel or the queue to report conditions and status in sequence. The summary bit represents
a summary of the current status of the corresponding data structure. In the case of the register model,
the summary bit is true when there is an event set to permit the occurrence of more than one true;
while in the case of the queue model, it is true if the queue is not empty.

As shown below, the MP1763B does not use bits 0, 1 and 7. As it uses bits 2 and 3 as the summary bits
of the status register, it has 5 register model types (, where 3 types extended) and one queue model type
- an output queue with no extension.

Service Request generated -----

Extended event
register or queue

(Not used by the MP1763B)

Standard event
register
(- ———— — o
-~ * ~
-+ - -+ Qutput queue
Extended event
1 register or queue (Queue not used by the MP1763B)
Extended event
register or queue (Queue not used by the MP1763B)
\/ Extended event R (ot ysed by the MP17638)
Status summary register or queue
message
Extended event

register or queue (Not used by the MP1763B)

Status byte register

8-7

SECTION8 STATUS STRUCTURE

8.2.3 Reading and clearing the STB register

Serial poll or the *STB? common query are used to read the contents of STB register. STB messages
conforming to IEEE 488.1 can be read by either method, but the value sent to bit 6 is different for each
of them.

The STB register can be cleared using the 3 CLS command.

(1) Reading by serial poll

When using the serial poll conforming to IEEE 488.1, the device must return a 7-bit status byte and an
RQS message bit which conforms to IEEE 488.1.

According to IEEE 488.1, the RQS message indicates whether the device sent SRQ as true or not. The
value of the status byte is not changed by serial poll. The device must set the RQS message to false
immediately after being polled. As a result, if the device is again polled before there is a new cause for
a service request, the RQS message is false.

(2) Reading by the #STB? common query

The *STB? common query requires the device to send the contents of the STB register and one <NR1
NUMERIC RESPONSE DATA > from the MSS (Master Summary Status) summary message. The
response represents the total binary weighted value of the STB register and the MSS summary
message. The STB-register bits 0 to 5 and 7 are weighted to 1, 2,.4, 8, 16, 32, and 128; and the MSS to
64, respectively. Thus, excepting the fact that bit 6 represents the MSS summary message instead of
the RQS message, the response to *kSTB? is identical to that for serial poll.

(3) Definition of MSS (Master Summary Status)

MSS indicates that there is at least one cause for a service request. The MSS message is represented at
bit 6 in a device response to the K STB? query but it is not produced as a response to serial poll. In
addition, it is not part of the status byte specified by IEEE 488.1. MSS is produced by the logical OR
operation of STB register with SRQ enable (SRE) register. In concrete terms, MSS is defined as follows.

(STB Register bit0 AND SRE Register bit0)
OR

(STB Register bitl AND SRE Register bit1)
OR

(STB Register bits AND SRE Register bit5)
OR
(STB Register bit7 AND SRE Register bit7)

8-8

SECTION8 STATUS STRUCTURE

As bit-6 status of the STB and SRQ enable registers are ignored in the definition of MSS, it canbe
considered that bit-6 status are always being 0 when calculating the value of MSS.

(4) Clearing the STB register by the *CLS common command

With the exception of the output queue and its MAV summary message, the *¢CLS common command
clears all status data structures (status event registers and queues) as well as the summary messages
corresponding to them.

In the following case, the output queue and its MAV summary message are both cleared.

3@ WRITE @103:"DTMAB;CTMAQ"
49 WRITE @1@3:"*CLS;DTM?"

That is to say, sending a ¥ CLS command (after a <PROGRAM MESSAGE TERMINATOR > or before
<QUERY MESSAGE UNIT > elements) clears all status bytes. This clears all unread messages in the
output queue and sets the MAV message to false. The MSS message is also set to false when a response
is made to *kSTB?. The *CLS command does not affect settings in the enable registers.

Service Request generation ---+

A

- —f - - -t

Extended event

register or queue (Not used by the MP1763B)

" Standard event
register

<+ -+ Qutput queue

Extended event
register or queue

(Queue not used by the MP17638)

Extended event
register or queue

(Queue not used by the MP1763B)

Status summary
message

Extended event
register or queue

(Not used by the MP1763B)

Extended event
register or queue

(Not used by the MP1763B)
Status byte register

8-9

SECTION8 STATUS STRUCTURE

8.3 Enabling SRQ

All types of summary message in the STB register can be enabled or disabled for service requests by
using the SRQ enable function. The service request enable (SRE) register is used for this function to
select summary messages as shown in the diagram below.

Bits in the service request enable register correspond to bits in the status byte register. If a bit in the
status byte corresponding to an enabled bit in the service request enable register is set to 1, a device
makes a service request to the controller with the RQS bit set to 1. For example, if bit 4 (MAV) in the
service request enable register is enabled, the device makes a request for service to the controller each
time the MAYV bit is set to 1 when there is data in the output queue.

e S R
i Logical OR -1 A | o
A KA K EFFR § ,——JI\—\ E ;
disabled =0, enabled=128(27) | 7 ><8g(_3—'_7_l Not used i g
Not used L>IMSS 6 RQS f€----- e
disabled =0, enabled=32 (25) | 5 ,@< 5 | esB€— g
disabled =0, enabled=16 (24) | 4 >O< 4 | Mave——— 5
disabled =0, enabled=8 (23) | 3 ()< 3 | ESB(ERROR) < :
disabled =0, enabled=4 (22) | 2 ;@< 2 | ESB(END) <— 3
disabled =0, enabled=2 (21 | 1 ,®4 1 | Notused <— 3
disabled =0, enabled=1 (20) | O "@* 0 | Notused 7

Service request enable (SRE) register Status byte (STB) register

(1) Reading the SRE register

The contents of the SRE register are read using the *kSRE? common query. The response message to
this query isa <NR1 NUMERIC RESPONSE DATA > integer from 0 to 255 which is the sum of the
bit digit weighted values in the SRE register. SRE register bits 0 to 5 and 7 are respectively weighted
to1,2,4,8,16,32and 128. The unused bit 6 must always be set to 0.

(2) Updating the SRE register

The SRE register is written to using the ** SRE common command. <DECIMAL NUMERIC
PROGRAM DATA > elements follow the 3 SRE common command. <DECIMAL NUMERIC
PROGRAM DATA > is a rounded integer expressed in binary which represents the sum of the binary
weighted value of each bit of SRE register. A bit value of 1 indicates enabled and a bit value of 0
disabled. The value of bit 6 must always be ignored.

(3) Clearing the SRE register

The SRE register can be cleared by executing the ** SRE common command or turn the power off and it
on again.

Using the *¢SRE common command, the SRE register is cleared by setting the value of the < DECIMAL
NUMERIC PROGRAM DATA > element to 0. Clearing the register stops status information from
generating rsv local messages, and service requests are no longer generated.

The MP1763B has the *kPSC command. Therefore, if the PSC flag is ture when power is turned on, the
SRE register is cleared.

8-10

8.4 Standard Event Status Register

8.4.1 Bitdefinition

SECTION8 STATUS STRUCTURE

The standard event status register must be available on all devices conforming to the IEEE 488.2
standard. The diagram below shows the operation of the standard event status register model.
Because the operation of the model is the same as that for the other models explained up till now, the
following only explains the meaning of each bit in the standard event status register as defined in the

IEEE 488.2 standard.

disabled =0, enabled = 128(27)
disabled =0, enabled = 64 (25)
disabled =0, enabled =32 (25)
disabled =0, enabled =16 (24)
disabled=0, enabled=8 (23)
disabled =0, enabled=4 (22)
disabled =0, enabled=2 (21)
disabled =0, enabled=1 (20)

ead by *kESE?

etby kESE <NRf>

Power on (PON)

User request (URQ)
Command error (CME)
Execution error (EXE)
Device-dependent error (DDE)
Query error (QYE)

Request for bus control (RQC)
Operation complete (OPC)

Standard Event Status Register

7 =@~ 7
6 ><&>4 6
5 -2 5
X%/~
4 @~ 4
3 rc\ 3
2 ,®< 2
1 ————-»@: 1
0 (&= 0
Y Y ¥ Y ¥V ¥)
Logical OR

'

ESB summary message bit

(To status-byte-register bit 5)

8-11

SECTION8 STATUS STRUCTURE

Bit Event name Description

7 | PON—Power on The power is turned to on

6 | URQ—User Request Request for local control (rtl).

This bit is produced regardless of whether a device is in remote or
local mode. It is not used for the MP1763B so, it is always set to 0.

5 |CME—Command Error Anillegal program message, a misspelt command or a GET
command within a program is received. (Syntax error in header
or parameter, or missing or too many parameters)

4 | EXE-—Execution Error A legal program message, which cannot be executed, is received
(Out of range for the parameter)

3 | DDE — Device-dependent Error | An error caused by other than CME, EXE or QYE occurred.

(The current device status cannot accept the request.)

2 | QYE—Query Error An attempt is made to read data in the output queue though there
is none there, or data is lost from the output queue due to any
reason, e.g. overflow etc..

1 |RQC—Request Control A device is requesting control of the bus. This bit is not used on
the MP1763B so, it is always set to 0

0 | OPC — Operation Complete A device has completed operations which were pending and is
ready to receive new commands. This bit is only set in response to
the *OPC command.

8-12

8.4.2 Query error details

SECTION8 STATUS STRUCTURE

No.

Item

Description

Incomplete program
messages

If a device receives an MTA from the controller before it receives the
terminator of the program message it is receiving, it aborts the
incomplete program message and waits for the next one. In order to
abort the incomplete message, the device clears its input buffer and
output queue, reports a query error and sets bit 2 in the standard
status register to indicate the query error.

Interruption of response
message

Ifa device receives an MLA from the controller before it has sent the
terminator of the response message it is sending, it automatically
interrupts the response message and waits for the next program
message. Inorder to interrupt the response message, the device
clears its output queue, reports a query error and sets bit 2 in the
standard status register to indicate the query error.

Sending the next
program message
without reading the
previous response
message

When a device becomes unable to send a response message because
the controller has sent another program message immediately
following a program or query message, the device aborts the
response message and waits for the next program message. It then
reports a query error as in No. 2 above.

Output queue overflow

When several program and query messages are executed in
succession, there may be too many response messages for the output
queue (256 bytes). If further query messages are received when the
output queue is full, the output queue cannot send responses to them
because an overflow situation exists in it. If there is an overflow in
the output queue, the device clears it and resets the section where
response messages are created. Then it sets bit 2 in the standard
event status register to indicate a query error.

8-13

SECTION8 STATUS STRUCTURE

8.4.3 Reading, writing to and clearing the standard event status register

Reading

The register is destructively read by the *kESR? common query, i.e. it is cleared after
being read. The response message is an NR1 value obtained by binary weighting the
event bit and converting it to a decimal number.

Writing

With the exception of clearing, writing operations cannot be performed externally.

Clearing

The register is only cleared in the following cases.

® A *CLS command is received

@ The power is turned on when the power-on-status-clear flag is true.
® Aneventisread for the *kESR? query command

8.4.4 Reading, writing to and clearing the standard event status enable register

Reading

The register is non-destructively read by the 3K ESE? common query, i.e. it is not cleared
after being read. The response message is returned by NR1 after having been binary
weighted and converted to decimal.

Writing

The register is written to by the *KESE common command. As bits 0 to 7 of the register
are respectively binary weighted to 1, 2, 4, 8, 16, 32, 64 and 128; data to be written is
sent by <DECIMAL NUMERIC PROGRAM DATA > which is the digit total of the bits
selected from these bits.

Clearing

The register is cleared in the following cases.

® A *KESE command with a data value of 0 is received

@ The power is turned on when the power-on-status-clear flag is true.
The event status enable register is not affected by the following.

@ Changes of the status of the IEEE 488.1 device clear function

@ A *kRSTcommon command is received

® A *CLS common command is received

8-14

SECTION8 STATUS STRUCTURE

8.5 Extended Event Status Register

The register models of the status byte register, standard event status register and enable registers are
mandatory for equipment conforming to the IEEE 488.2 standard.

InIEEE 488.2, status-byte-register bits 7 (D108), 3 (D104) to 0 (DIO1) are assigned to status- summary
bits supplied by the extended-register and extended-queue models.

For the MP1763B, as shown in the diagram below, bits 0, 1 and 7 are unused and bits 2 and 3 are
assigned to the END and ERROR summary bits as the status-summary bits supplied by the extended-
register model.

As the queue model is not extended, there is only one type of queue - the output queue.

Standard event
register model

Standard event summary bit

MAV summary bit

A

A

-+ -+ Qutput queue

B ERROR event summary ERROR event
register model

Not used

END event summary bit END event
register model

Not used

Status summary
message

B
Status byte register

The following pages describe bit definition, the reading, writing to and clearing of registers for the
END and ERROR extended event register models.

8-15

SECTION8 STATUS STRUCTURE

8.5.1 Bitdefinition of END eventstatus register

The following describes the operation of the END event status register model, the naming of its event
bits and what they mean.

disabled = 0, enabled = 32768(2'5) [15] > (&) {15] (Not used)
disabled = 0, enabled = 16384(2'4) [14] > (&) F14] (Not used)
disabled =0, enabled = 8192 (2'3) [13] > &) 13] (Not used)
disabled = 0, enabled = 4096 (212)[12 ,C? 12} (Not used)
disabled =0, enabled = 2048 (2') |11} >(& 11 (Not used)
disabled =0, enabled = 1024 (219)]10] > (& 10} (Not used)
disabled =0, enabled =512 (2% |9] > & 9] BACK UP ERROR
disabled =0, enabled =256 (28) |8 >(& | 8 | PLLUNLOCK
disabled =0, enabled =128 (27) |7] > (& 7] (Not used)
disabled =0, enabled =64 (26) |6 | >(& 6 | (Not used)
disabled =0, enabled =32 (25) |5 | >(& 5 | (Not used)
disabled =0, enabled =16 (29) |4 >(& 4 | (Not used)
disabled =0, enabled=8 (23 |3 > & 3] Clock output phase setting
disabled =0, enabled=4 (22) |2 > @ | 2 | Pattern setting completion
disabled =0, enabled=2 (2) |1}>(& | 1| FD Access completion
disabled =0, enabled =1 (29) |0 (& 0] (Not used)
END Event Status Enable Register
Y Y Y Y Y Y Y YYYY
Logical OR ,
¢ Read by ESR1?

ESB summary message bit
(To bit 2 of the status register)

8-16

SECTION8 STATUS STRUCTURE

Bit Event name Description
15 (Not used) (Not used)
14 (Not used) (Not used)
13 (Not used) (Not used)
12 (Not used) (Not used)
1 (Not used) (Not used)
10 (Not used) (Not used)
9 BACK UP ERROR Error has been detected from back up data.
8 PLLUNLOCK | Synthesizer PLL unlock has been detected (only when
OPTION-01 is installed).
7 (Not used) (Not used)
6 (Not used) (Not used)
5 (Not used) (Not used)
4 (Not used) (Not used)
3 Clock output phase setting | The servo circuit used for setting clock output phase has been
completion turned from BUSY to READY state.
2 Pattern setting completion | Programmable pattern setting has been completed.
1 FD Access completion Accessing the floppy disk has been completed.
0 (Not used) (Not used)

8-17

SECTION8 STATUS STRUCTURE

8.5.2 Bitdefinition of ERROR event status register

The following describes the operation of the ERROR event status register model, the naming of its
event bits and what they mean.

disabled = 0, enabled = 32768(2'5) [15] >@ {9
disabled = 0, enabled = 16384(214) | 14| > (&) 14
disabled =0, enabled =8192 (2'3)[13 > (& 13

— }——
disabled =0, enabled = 4096 (212)[12 > &) 12]
disabled = 0, enabled = 2048 (21" [11] &) 11]
disabled =0, enabled = 1024 (219) [10] > (&) 10
: _ _ \ _
disabled =0, enabled =512 (2%) [9] (&) 9] L vot used)
disabled =0, enabled =256 (28) |8 | >(& 8
disabled =0, enabled =128 (27) | 7] >&) 7]
disabled =0, enabled =64 (26) |6 & B
disabled =0, enabled =32 (25) |5 | (& 5|
disabled =0, enabled =16 (24) |4] >(&) 4]
disabled =0, enabled=8 (23 |3 }—> (&) B
disabled =0, enabled =4 (2?) Fz_—» 2])
disabled =0, enabled=2 (2 |1 [>(& | 1| FD ERROR
disabled =0, enabled=1 (20 [0}(&) 0] (Not used) .
Error Event Status Enable Error Event Status Register
Register ;

YYYY YYYVYY Y)

| Logical OR
et by ESE2<NRF> l

Read by ESE2 ? ESB summary message bit
(To bit 3 of the status register)

8-18

SECTION8 STATUS STRUCTURE

Bit Event name Description
15 (Not used) (Not used)

14 (Not used) (Not used)

13 (Not used) (Not used)

12 (Not used) (Not used)

11 (Not used) (Not used)

10 (Not used) (Not used)

9 (Not used) (Not used)

8 (Not used) (Not used)

7 (Not used) (Not used)

6 (Not used) (Not used)

5 (Not used) (Not used)

4 (Not used) (Not used)

3 (Not used) (Not used)

2 (Not used) (Not used)

1 FD ERROR FD abnormal status has occurred.
0 (Not used) (Not used)

8-19

SECTION8 STATUS STRUCTURE

8.5.3 Reading, writing to and clearing the extended event status register

Reading

The register is destructively read by the a query, i.e. it is cleared after being read. The
END and ERROR event status registers are read by the ESR17 and ESR2? queries.
The read value, <NR1 >, is obtained by binary weighting the event bit and converting
it to decimal.

Writing

With the exception of clearing, writing operations cannot be performed externally.

Clearing

The register is cleared in the following cases.

DA *CLS command is received

@The power is turned on when the power-on-status-clear flag is true.
®An event is read for a query command

8.5.4 Reading, writing to and clearing the extended event status enable register

Reading

The register is non-destructively read by a query, i.e. it is not cleared after being read.
The END and ERROR event status enable registers are read by the ESE1? and ESE27?
queries. The read value, returned by <NR1>, is obtained by binary weighting the
event bit and converting it to decimal.

Writing

The END and ERROR event status enable registers are written to by the ESE1 and
ESE2 program commands. As bits 0 to 7 of the registers are respectively binary
weighted to 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, and 32768
data to be written is sent by <DECIMAL NUMERIC PROGRAM DATA >, the digit
total weighted value of the bits selected from among them.

Clearing

The register is cleared in the following cases.

@ ESE1and ESE2 program commands with a data values of 0 are received by the
END and ERROR event status enable registers.

@ The power is turned on ' when the power-on-status-clear flag is true.

The extended event status enable register is not affected by the followings:

@ Changes of the status of the IEEE 488.1 device clear function

@ A *¥RST common command is received

® A *CLS common command is received

8-20

SECTION8 STATUS STRUCTURE

8.6 Queue Model

The status-data-structure queue model is shown at the right of the diagram below. A queue is data
structure including data lists arranged in sequence which provides a means of reporting sequential
status and other information. The existence of such information in the queue is indicated by summary

messages. The queue contents are read by the handshake when a device is in TACS (Talker Active
State).

Non-empty summary bit

MSS 6 RQS

/‘

AN

i Queue Output queue
Status byte register putq

MAV (Message Available) summary
bitindicates that the output queueiis
not empty.

The output queue, which is mandatory, is the queue that outputs the MAV summary message to bit 4 of
the status byte. A queue (which can output the MAV summary message to any of bits 0 to 3 or 7 of the
status byte register) is an option and is simply called a “queue”.

As the summary messages from the register model can also be connected to bits 0 to 3 or 7 of the status
byte register, the types of summary messages vary with the device.

Though Anritsu assigns bit 7 of the status byte register for the use of summary message bits from
“queues”, it is not used when the output queue is sufficient.

The output queue is compared with an ordinary queue on the next page.

8-21

SECTION8 STATUS STRUCTURE

Comparison of Output and Ordinary Queues

cannot be written directly to the
output queue. They can only be sent to
or from the system interface by the
protocol specified by IEEE 488.2
message exchange.

Item Output queue Ordinary Queue
Data input/ output | FIFO (First-In First-Out) Need not always be FIFO
operation

Read Can only be read through the protocol | Read by device-dependent query
defined in SECTION 6. The type of commands. The response messages
response message unit read is read must be of the same type.
determined by the query.

Writing <PROGRAM MESSAGE > elements | <PROGRAM MESSAGE > elements

cannot be written directly to a queue.
They indicate encoded device
information.

Summary message

Is true (1) when the output queue is
not empty and false (0) when the
output queue is empty. The MAV
summary message is used to
synchronize the exchange of
information between a device and the
controller.

Is true (1) when the queue is not empty
and false (0) when the queue is empty.

Clearing

The output queue is cleared in the
following cases:
@® Allitemsin it have been read

@ A DCLbus command is received to
initialize message exchange

® PON is true at power on

A queue is cleared in the following
cases:
@® Allitems in it have beenread

@ A *CLS command is received

® Other device-dependent methods
are used

8-22

SECTION8 STATUS STRUCTURE

8.7 Techniques for Synchronizing Devices with the Controller

There are 2 ways of synchronizing devices with the controller.

® Enforcing the sequential execution: (Using the *¥WAI? command)

@ Wait for a response from the device's output queue: (Using the %OPC? query)

(® Wait for a service request: (Using the *¥ OPC command / *kOPC? query)

8.7.1 Enforcing the sequential execution
There are two types of commands specific to devices: sequential commands and overlap commands.
® Sequential command

This is a command or query that is sent by the controller and does not allow the next command to be
executed while the device is executing something.

¢ Overlap command

This is a command or query that is sent by the controller and allows the next command to be executed
even while the device is executing something.

Enforcing the sequential execution is a synchronizing technique used to enforce a command that
natively acts as an overlap command to be executed sequentially and not to perform the next process
until one process has been completed. In this technique, the *¥WAI command is used.

8-23

SECTION8 STATUS STRUCTURE

8.7.2 Waitfor aresponse from the output queue

Executing the *kOPC? query sets a 1 in the output queue to generate a MAV summary message when a

device has completed all of its pending operations.

In this technique, a device is synchronized with the controller by reading the 1 set in the output queue

as described above or the MAV summary message bit.

As the MAV summary message bit is used in the “wait for a service request” technique, it will be

explained in the next paragraph. The following explains synchronization by reading the output queue.

MSS 6 RQS

MAYV (Message Available) summary j

Status byte register

<Reading output-queue>

bit indicates that the output queue is \

not empty.

@ Send overlap command.

4

@ Send *OPC?

{

Lk OPC? command.

<) Read output queue.

!

To the next operation

8-24

-The next %¥OPC?is used to confirm o
the completion of the final com-
mand. For this reason, it is normal to
send kOPC? after executing an
*Joverlap command. However, even
for sequential commands, if itis
necessary to confirm the end of
execution of the final command
from the execution sequence or
execution route, this is done by the

Output

queue

The 1 whichisread is
ignored, and it goes on to
the next operation

SECTION8 STATUS STRUCTURE

8.7.3 Wait for a service request

In this technique, the controller is momentarily interrupted by an SRQ signal from a device to process a
status message from the device.

In a normal interrupt, the device would make a request to the controller at any time regardless of what
the controller is doing. However, in using it as a technique for synchronizing the device with the
controller, the controller sends an *¢ OPC command or an }kOPC? query to the device to check whether
the device's operation has been completed or not. While waiting for the SRQ signal from the operation
complete event, the controller carries on with some other useful task, and when it detects the operation
complete event, the controller processes the designated task.

I 7 Logical OR
A
MSS 6 RQS
7 >(& 7 |roweron
6 (& 6 | user request (Not used)
5 ,@‘ 5 Jcommanderror
4 >/8?“’ 4 |Eexecution error
3 ‘@< 3 Device-dependent error
2 r@‘ 2 |Queryerror
1 >@‘ 1 | E{ﬁgtugsséés)r bus control
enabled=20 | U ' peration complete
Standard event status enable
register (SESER) Standard event status
register (SESR)
Status byte register 1 -+ -+ - QOutput queue
M <Using the %OPC command > o
MDEnable the 20 bit of the standard event status enable register. WRITE @1@3:"ESE 1"
@Enable the 25 bit of the service request enable register. WRITE @1@3:":kSRE 32"

Y

@ Make the device execute the specified operation. WRITE ©@163:<PROGRAM MESSAGE>

Y

@Execute the ¥OPC command. (Since itis an overlap command, the

next command is also executed) WRITE @103:"*0PC"
®Wait for an SRQ interrupt. (ESB summary message) -+ -~ Value of the status byte: 26+2°=96

8-25

SECTION8 STATUS STRUCTURE

B <Using the ¥OPC? query>

MEnable the 2* bit of the service request enable register. WRITE @103:"*SRE 16"

Y

@Make the device execute the specified operation. | WRITE @1@3:<PROGRAM MESSAGE>

Y

@ Send the *OPC? query. (Wait until the operation in @ has been completed) WRITE @1@3:"%QPC?"

U

@Read the ASCll character 1 in the output queue and discard it.

Y

®Wait for the SRQ interrupt (MAV summary message) | - - - - Value of the status byte: 2° + 2°= 80

U

To the next operation

Service Request
Generation

Logical OR ?

W | A A AR A
7 » ‘é@‘_‘—m Not used

MSS 6 RQS |<----- -
(&) 5 | ess
&< MAV <€

&)< ESB(ERROR)

&

R SR

——————— o ——)

v

enabled =16 (29)

ESB(END)

PN w
\
(;\
PN w

Not used

0 _’C&/‘ 0 | Notused

Service request enable register Status byte register

-+ -+ Output queue

8-26.

SECTION 9
DETAILS OF DEVICE MESSAGES

This section explains the details of the device messages in the table.

Formats and usage example in this section are explained in the HP-BASIC of the Hewlett-Packard

HP9000 Series.
TABLE OF CONTENTS
9.1 Table of Device MeSsagesoiini i 9-3
9.1.1 Table of Device Messages (in the Alphabeticorder) 9-3

9.1.2 Device Message (Panel Correspondence)coooeuueiinanon... 9-7
9.1.3 Detailed Explanation of Device Messages

9-1

9-2

(Blank)

SECTIONY DETAILS OF DEVICE MESSAGES

This section explains each device message by group. Each group is corresponded to the front and rear
panel of MP1763B. Groups are specified according to the setting or request contents.

9.1 Table of Device Méssages

Control messages and data request messages that are stipulated in the MP1763B specifications are
explained in the listing order.

Check the details of each command by referring to the page numbers listed in the last column of the
table under “Device message details”. '

9.1.1 Table of Device Messages (in the Alphabetic order)

An alphabetic list of each control message and data request message is shown in Table 9-1.

9-3

SECTION9 DETAILS OF DEVICE MESSAGES

Table 9-1 Table of Device Messagess (Alphabetic order)

Control Message R(Iejqalfgst Device Message Details
Function Message

Header Ntan;s;ic Header Section Page
Page number ADR | NR1 format ADR? |PATTERN P9-47
Pattern data preset ALL | NR1 format - PATTERN P9-51
(All page, All bits)
Alternate pattern ALT | NR1format ALT? |[PATTERN P9-41
A /B display switch
Alternate pattern APS | NR1 format APS? |Other P9-83
A/ B switch signal selection
Pattern bit BIT NR1 format BIT? |PATTERN P9-49

HEX format

Clock 1 output amplitude CAP | NR2format CAP? |OUTPUT P9-71
Clock 1 output Delay Time CDL | NR2format CDL? |OUTPUT P9-70
Clock 1 output CTM | NR1format | CTM? |OUTPUT P9-58
termination voltage
Clock 1 output offset COS | NR2format COS? |OUTPUT P9-72
Data output amplitude DAP | NR2format DAP? |OUTPUT P9-60
Data / Data display switch DDS | NRI1 format DDS? |OUTPUT P9-75
FD data delete DEL | NR1format - MEMORY P9-26
Data length DLN | NRlformat | DLN? |PATTERN P9-44
Delay status - - DLY? |Other P9-90
Data output offset DOS | NR2format DOS? |OUTPUT P9-63
Data output termination voltage DTM | NR1lformat | DTM? [OUTPUT P9-57
Error insertion EAD | NR1format EAD? |PATTERN P9-42
Error insertion channel ECH | NR1format | ECH? |Other P9-80
External error insertion EEI | NR1 format EEI? |Other P9-82
FD Format FDF - - MEMORY P9-30
File No. / Directory mode switch FIL NRI1 format FIL? |MEMORY P9-24
FD/Error message - - FDE? |MEMORY P9-35
Memory FD mode - - FMD? |MEMORY P9-33
Internal clock frequency FRQ | NR1format FRQ? |INTERNAL CLOCK | P9-21
File contents search - - FSH? |[MEMORY P9-31

9-4

Table 9-1 Table of Device Messagess (Alphabetic order: continued)

SECTION9 DETAILS OF DEVICE MESSAGES

Control Message Re[?cafgst Device Message Details
Function Message

Header leljrggic Header Section Page
Initialization INI - - Other P9-84
Pattern logic LGC | NR1 format LGC? |PATTERN P9-37
Alternate A /B loop times LPT | NRI1 format LPT? |PATTERN P9-43
FD access status - - MAC? |[MEMORY P9-34
Memory mode switch MEM | NR1format | MEM? |MEMORY P9-29
PRBS mark ratio MRK | NR1format | MRK? |PATTERN P9-40
Data output amplitude NAP | NR2format NAP? |OUTPUT P9-62
Data output offset NOS | NR2format | NOS? |OUTPUT P9-68
Offset reference value OFS | NR1 format OFS? |OUTPUT P9-59
Output ON/OFF OON | NR1 format | OON? |OUTPUT P9-74
Page number PAG | NR1format | PAG? [PATTERN P9-47
PLL lock status - - PLL? |Other P9-87
Page number / pattern sync PPD | NR1format | PPD? |PATTERN P9-55
trigger position display switch
Pattern sync trigger position PSP NR2 format PSP? |PATTERN P9-53
Pattern data preset PST NR1 format - PATTERN P9-52
(1 page, All bits)
ZERO SUBST /PRBS stage PTN | NR1format | PTN? |PATTERN P9-39
Generated pattern selection PTS NR1 format PTS? |PATTERN P9-38
Power cut, recoverys status - - PWI? |Other P9-89
FD data recall RCL | NRI1 format - MEMORY P9-25
Pattern data output byte number RED | NRI1 format - Other P9-86
Internal clock resolution RES | NR1lformat | RES? |INTERNAL CLOCK |P9-22
switching
FD data resave RSV | NR1 format - MEMORY P9-28
Internal timer setting RTM | NR1format | RTM? |[Other P9-88
FD data save SAV | NR1 format - MEMORY P9-27
Mark ratio AND bit shift number SFT NR1 format SFT? [Other P9-81
Sync signal output selection SOP | NR1 format SOP? |Other P9-79

SECTION9 DETAILS OF DEVICE MESSAGES

Table 9-1 Table of Device Messagess (Alphabetic order: continued)

Data
Control Message Request Device Message Details
Function Message
Numeric .

Header Data Header Section Page
1/1SPEED, SPD | NR1 format SPD? |OUTPUT P9-17
1/4 SPEED display switch
DATA/DATA tracking TRK | NR1 format TRK? |OUTPUT P9-76
Pattern data input byte number WRT | NR1 format - Other P9-85
ZERO SUBST length ZLN | NRI1 format ZLN? |PATTERN P9-46

9-6

SECTION9 DETAILS OF DEVICE MESSAGES

9.1.2 Device Messages (Panel correspondence)

Figures 9-2 (1) to (6) and Table 9-2 (1) to (5) show the correspondence of control messages and data
arequest messages to the panel keys.

9-7

SECTION9 DETAILS OF DEVICE MESSAGES

® INTERNAL CLOCK section

No.1 No.2

FRQAX RESAX
FRQ? RES?

INTERNAL CLOCK (OPTION.01) /

FREQUENCY P

G948 85 e

) 0 =5 0P P 0 0P vz
TUNING RESOLUTION

<= &z L

|

O

Fig. 9-2-(1) INTERNAL CLOCK Section

SECTION9 DETAILS OF DEVICE MESSAGES

Table 9-2-(1) List of Device Messages (INTERNAL CLOCK Section)

Control Message qualfgst Device M?“age
Function Message Details
Header Nll’)naqgic Header ltNeon.1 Page
¢ INTERNAL CLOCK section
Internal clock frequency FRQ | NR1 format FRQ? 1 P9-20
Internal clock resolution switching RES | NRI1 format RES? 2 P9-22

9-9

SECTION9 DETAILS OF DEVICE MESSAGES

e MEMORY Section

No.3 No.4 No.6 No.8
FILAX RCLAX SAVAX MEMAX
FIL? MEM?

No.5 No.7
DELAX RSVAX
\._MEMORY / /
e o 4 v—-MODE!-
[] exist X=X DIR RECALL SAVE
wm FILE No.DELETE RESAVE SHIFT PATT OTHERS
gg s S s | o 3 3 3
~ OO Oe O
|

| 1[]

3|

No.12
MAC?
- FD mode : No.11 FMD?
- FD error message : No.13 FDE?
- FD format : No.9 FDF

Fig. 9-2-(2) MEMORY Section

9-10

SECTION9 DETAILS OF DEVICE MESSAGES

Table 9-2-(2) List of Device Messages (MEMORY Section)

Control Message R(!.‘anljltgst Device M'essage
Function Message Details
Header Nt{;)r;\gic Header ItNeo'T‘ Page
e MEMORY section

File No./ Directory mode switching FIL NR1 format FIL? 3 P9-24
FD data recall RCL | NR1 format - 4 P9-25
FD data delete DEL | NR1 format - 5 P9-26
FD data save SAV | NRI1 format - 6 P9-27
FD dataresave RSV | NR1 format - 7 P9-28
Memory mode switch MEM | NR1format | MEM? 8 P9-29
FD format FDF - - 9 P9-30

File contents search

- FSH? 10 | P9-31

Memory FD mode

- FMD? 11 P9-33

FD access status

- MAC? 12 |P9-34

FD error message

- FDE? 13 P9-35

9-11

SECTION9 DETAILS OF DEVICE MESSAGES

® PATTERN Section

No.14 No.15 No.16 No.17
LGCAX PTSAX PTNAX MRKAX
LGC? PTS? PTN? MRK?
o [PATTERN g ® No.19
LOGIC ~— PATTEAN — ~——— pRBS/ZERO SUBST = *PRBS MARK RATIO" EADAX
pos AUINOATA"ZS RRBS 77 8 115 "6 %5 51 0B 1B 1A i / EAD?
No e=F L= 2 LR
; O =) D &) No.21
ALT? ~— ALTN — ERROR. ADDITION DLNAX
oN (1X10" /
o R =R e A U DLN?
0.
O 0O = S
LPTAX DELENGTQERO su ™ ————— No.22
LPT? A /B LOOP TIME —— [DATA LENGTH
. b [ZERO SUBST LENGTH N —— ZLNAX
‘o3 ~8588]|8BE8088 |0 ST g
ADRAX [PAGE/ [} PATTERN SYNG POSITION
aoR? . | mo s DigPLAY A No.27
- PNEEEBEBEREBN |) = _— PPDAX
PPD?
No.23 — - BIT
PAGAX ‘:13 Lij |_3:| ‘:4] T ‘? l7] ‘T"
e D00 OO0 00 No.24
s I e R e R v e T e T e T s Ry BITAX
9 0 K] 2 @ 4 15
No.27 - OO0 OO oo BIT?
P SP7AX W AOLL —-{ESET '—0 PAGE-1——~ PATTERN TRACKING
LOADI
PP i O,0 O .0 =0 =
No.25 No.26
ALLAX PSTAX

9-12

Fig. 9-2-(3) PATTERN Section

SECTION9 DETAILS OF DEVICE MESSAGES

Table 9-2-(3) List of Device Messages (PATTERN Section)

Control Message quagzst Device Mf—:‘ssage
Function Message Details
Header Nggxgk Header lﬁz? Page
¢ PATTERN section

Pattern logic LGC | NRi1format | LGC? 14 |P9-37
Generation pattern switch PTS | NR1format PTS? 15 |P9-38
ZERO SUBST /PRBS stage PTN | NR1format | PTN? 16 |P9-39
PRBS mark ratio MRK | NRI1 format | MRK? 17 | P9-40
Alternate pattern A /B display switch ALT | NR1 format ALT? 18 P9-41
Error insertion EAD | NR1format | EAD? 19 P9-42
Alternate A /B loop times LPT | NR1 format LPT? 20 P9-43
Data length DLN | NR1format | DLN? 21 P9-44
ZERO SUBST length ZLN | NR1format | ZLN? 22 | P9-46
Page number PAG | NR1format | PAG? 23

ADR | NR1format | ADR? P9-47
Pattern bit BIT NR1 format BIT? 24 | P9-49

HEX format

Pattern data preset (All pages, All bits) ALL | NR1format - 25 P9-51
Pattern data preset (1 page, All bits) PST | NR1 format - 26 P9-52
Pattern sync trigger position PSP | NR2 format PSP? 27 P9-53
Page No./ Pattern sync trigger position PPD | NR1format PPD? 28 P9-55
display switch

9-13

SECTION9 DETAILS OF DEVICE MESSAGES

® OQUTPUT Section

No.40 No.32 No.33 No.34 No.35
DDSAX DAPAX NAPAX DOSAX NOSAX
DDS? DAP? NAP? DOS? NOS?
No.41
TRKAX
TRK? AN \ /OUTPUT \ /7
\\ \\ // DATA \‘/
& AMPUTUDE OFFSET
T 500 GND\ [DATA MPUTUOE
on o NETTEm BEFs., 8680,
DTM? \\, & ‘i%* : No.42
1 DATA/DATA @ @ / SPDAX
SUARD \g TRAGKING SPD?
No.39 7
i TLOCK 1
DELAY TIME
B No.36
= H IE(? H ps
(—) 1A SPEED SRS | __— CDLAX
(OPTION.03) BU|:S]Y .’__'__—-——‘ CD L?
CLOGK 1
7 500 GND AMPLITHDE’ B OFFSET
No.30 3 ect ngﬁvp.pg’BBBBv
CTMAX \ ECL
?
T I /é@ p
GUARD
No.37 No.38
CAPAX COSAX
CAP? C0s?

Fig. 9-2-(4) OUTPUT Section

9-14

SECTION9 DETAILS OF DEVICE MESSAGES

Table 9-2-(4) List of Device Messages (OUTPUT Section)

Control Message Ré)qat}zst Device M?ssage
Function Message Details
Header Nggxgk Header lﬁﬂ? Page
® OUTPUT section

Data output termination voltage DTM | NR1format | DTM? 29 P9-57
Clock1 output termination voltage CTM | NR1format | CTM? 30 P9-58
Offset reference value OFS | NR1format OFS? 31 P9-59
Data output amplitude DAP | NR2format DAP? 32 P9-60
Data output amplitude NAP | NR2format | NAP? 33 P9-61
Data output offset DOS | NR2format DOS? 34 P9-62
Data output offset NOS | NR2format | NOS? 35 |P9-68
Clock1 output delay time CDL | NR2format CDL? 36 P9-70
Clock1 output amplitude CAP | NR2format CAP? 37 P9-71
Clock1 output offset COS | NR2format COSs? 38 P9-72
Output ON/OFF OON [NRI1format | OON? 39 P9-74
DATA / DATA display switch DDS | NR1format | DDS? 40 |P9-75
DATA / DATA/ tracking TRK | NR1format | TRK? 41 |P9-76
1/1SPEED, 1/4 SPEED display switch SPD | NR1format SPD? | 42 P9-77

9-15

SECTION9 DETAILS OF DEVICE MESSAGES

® Othersections

(Front panel)

(Rear panel)

ERROR
ADDITION CH
(1-32)

®®

X10 ¢ X1

No.44
ECHAX
ECH?

— SYNC OUTPUT———

[1/64 CLOCK

[FIXED POSN }PATTERN

[VAR POSN

)

No.85

SOPAX

SOP?

SYNC

0/-1V 50Q

Fig. 9-2-(5) Other Sections (Front Panel)

(Function Switch)
No.45
SFTAX
SFT?
FUNCTION
ITEMS swW SPECIFICATION No.46
BIT SHIFT NUMBER 0:1 BIT
FOR MARK RATIO VARIED 'l ser / EE:,AX
EXTERNAL ERROR INJECTION 2 | Y 82': '
FD FORMATTING TYPE 3 | 0: 1440kB/720kB
1: 1232kB/640kB .\ No.9
ALTERNATE PATTERN 0: INT FDFAX
A/B SELECT TIMING 4 1: EXT

No.47
APSAX
APS?

Fig. 9-2-(6) Other Sections (Back Panel/Function Switch)

Note

The back-panel function switches have the following functions when the
value set at the REMOTE status and the values of the back-panel switches
are different.

® The value set art REMOTE is saved when the power to the PPG is cut in
the REMOTE status. (However, when the Initialize command INI or
*%RST have been sent, the settings are initialized.)
Additionally, if the PPG is in the LOCAL status, the setting status of
the back-panel function switches takes priority and the setting contents
in the REMOTE status are disabled.

9-16

SECTION9 DETAILS OF DEVICE MESSAGES

Table 9-2-(5) List of Device Messages (Other Sections)

Control Message qual;[gst Device Mc.assage
Function Message _ Details
Header N%ngk Header Iﬁﬂ? Page
® I'ront panel
Sync signal output selection SOP | NR1 format SOp? 43 P9-79
® Back panel
Error insertion channel ECH | NR1format | ECH? 44 P9-80
® Function switch
Mark ratio AND bit shift number SFT | NR1format SFT? 45 P9-81
External error insertion EEI NR1 format EEI? 46 P9-82
Alternate pattern A /B switch signal APS | NR1format APS? 47 P9-83
selection
® Other
Initialize ' INI - - 48 P9-84
Pattern data input byte number WRT | NR1format - 49 P9-85
Pattern data output byte number RED | NR1format - 50 P9-86
Internal synthesizer PLL - - PLL? 51 |P9-87
Internal timer setting RTM | NR1format | RTM? 52 P9-88
Power cut, recovery status - - PWI? 52 P9-89
Delay status - - DLY? 54 P9-90

9-17

SECTION9 DETAILS OF DEVICE MESSAGES

9.1.3 Detailed Explanation of Device Messages
MP1763B control messages and data request messages are explained in this section.

The explanation below is already described in HP-BASIC of the Hewlett-Pacckard HP9000 Series.

9-18

SECTION9 DETAILS OF DEVICE MESSAGES

® INTERNAL CLOCK Section
The following pages show each control messages for the INTERNAL CLOCK section.

The A in the strings indicates a space.

9-19

SECTIONS9 DETAILS OF DEVICE MESSAGES

1) FRQ Internal Clock Frequency (FReQuency)
B Function Sets internal clock frequency
Header Program Query Response (Character No.)
FRQ |FRQAmMm FRQ? FRQAM (kHz units: FIX8)
(MHz units: FIX5)
B Valueofm When internal clock frequency setting resolution in kHz

Min. value: 50000
Max. value: 12500000
Step: 1

The response is as follows:
FROAAAADSDB0D (Min. value)

FRQA 12500000 (Max. value)

When internal clock frequency setting resolution in MHz
Min. value: 50
Max. value: 12500
Step: 1

The response is as follows:
FRQOAAAADD (Min. value)

FRQA 12500 (Max. value)
B CommandType Sequential command

M Usage Restrictions The command is invalid under the following setting conditions.
Program: When Option 01 (internal synthesizer) not installed
When the FD is being accessed

Query: The command is invalid under the following setting condition
and ERR (CR/LF) is output
When Option 01 not installed

9-20

SECTION9 DETAILS OF DEVICE MESSAGES

1) FRQ Internal Clock Frequency (FReQuency) continued
B Usage Example Program: When resolution is MHz and internal clock frequency is 500
MHz

OUTPUTAT7@0;"FRQADDD"

When resolution is kHz and internal clock frequency is 500
MHz

OUTPUTAT70@; "FRQA500000"

Query: When frequency set to 1 GHz
OUTPUTAT700;"FRQ?"
ENTERAT700;BS
PRINT B$

!

When frequency resolution is MHz units
FRQAAAA10DD (CR/LF)

When frequency resolution is kHz units

FRQA A 100033 (CR/LF)

M Note When an external clock is input when Option 01 is installed, the
settings shown above can be set, but there is no change in the actual
output. In addition, the display value is output in response to the query.

9-21

SECTION9 DETAILS OF DEVICE MESSAGES

2) RES Internal Clock Resolution Switching (RESolution)
B Function Sets resolution of internal clock frequency
Header Program Query Response (Character No.)
RES |RESAm RES? RESAm (FIX 1)
B Valueofm @ : kHz units
1 : MHzunits
B CommandType
M Usage Restrictions The command is invalid under the following setting conditions.

9-22

Usage Example

Note

Program: When Option 01 (internal synthesizer) is not installed
When the FD is being accessed

Query: The command is invalid under the following setting condition
and ERR (CR/LF) is output
When Option 01 not installed

Program: When internal clock frequency resolution is kHz units

OUTPUTAT70@;"RESAQ"

Query: When internal clock frequency resolution is MHz units

OUTPUTAT70@; "RES?"
ENTERA700;B$
PRINT B §

!
RESA 1 (CR/LF)

When an external clock is input when Option 01 is installed, the
settings shown above can be set, but there is no change in the actual
output. In addition, the display value is output in response to the query.

SECTION9 DETAILS OF DEVICE MESSAGES

® MEMORY section
The following pages show each control messages for the MEMORY section.

The A in the strings indicates a space.

9-23

SECTION9 DETAILS OF DEVICE MESSAGES

3) FIL File No./ Directory Mode Switch
(FILe no./directory mode)
B Function Switches file No. / Directory mode
Header Program Query Response (Character No.)
FIL |FILAM FIL? FILAm (FIX 1)
B Valueofm @ : File No. mode
1 : DIR mode
B CommandType Overwrap Command
B UsageRestrictions The command is invalid under the following setting conditions.

9-24

Usage Example

Note

Program: When the FD is being accessed
Query: None

Program: When setting to DIR mode
OUTPUTAT7@@;"FILAL"

At this time, the inserted FD is accessed and the directory
information is saved to internal memory.

Query: When setting to File No. mode
OUTPUTAT700:"FIL?"
ENTERA700;B$
PRINTABS

)
FILA®@ (CR/LF) output

When an error is occurred at file access, and error is returned and the
error information is displayed at the MEMORY display.
This error display is cleared when the settings below are made.

File No./ Directory mode switch ~ (No. 3)

FD data recall (No. 4)
FD data delete (No. 5)
FD data save (No. 6)
FD data resave (No.T)
Memory mode switch (No. 8)
FD format (No.9)

SECTION9 DETAILS OF DEVICE MESSAGES

4) RCL FD data recall (ReCalLl)
B Function Sets FD contents at PPG
Header Program Query Response (Character No.)
RCL [RCLAmM None None
M Valueofm Sets file name in range 0 to 99
Numericrange: Max. value 99
Min. Value 0
Step 1
B Command T Type Overwrap command
M Usage Restrictions The command is invalid under the following setting conditions.

Usage Example

Note

Program: When the FD is being accessed

Program: When setting file contents of file No. 9
OUTPUTA700;"RCLAO"

If the specified file does not exist, an error is returned and the error
information is displayed at the MEMORY display.
This error display is cleared when the settings below are made.

File No./ Directory mode switch (No. 3)
FD data recall (No. 4)
FD data delete (No. 5)
FD data save (No. 6)
FD dataresave (No.)
Memory mode switch (No. 8)
FD format (No.9)

In addition, the FD abnormal occurrence bit of the extended event
status register ESR2 (ERROR) bit is set.

The following files are read according to the memory mode setting
status.

PATT mode: RR**.PTN or TT* % PTN

OTHERS mode: TT**.0TH
However, in the PATT mode, when there are files where the
RR*¥ % PTN and TT**.PTN parts are identical, TT* % PTN takes
priority at reading.

9-25

SECTION9 DETAILS OF DEVICE MESSAGES

5) DEL FD data delete (DELete)

B Function Deletes specified file from FD

Header Program Query Response (Character No.)
DEL |DELAmMm None None

M Valueofm Sets file name in range 0 to 99

Numericrange: Max. value 99
Min. Value 0
Step 1

B Command Type Overwrap command
B Usage Restrictions The command is invalid under the following setting conditions.
Program: When the FD is being accessed

M Usage Example Program: When erasing file contents of file No. 9
OUTPUTAT700;"DELA9"

B Note If the specified file does not exist, an error is returned and the error
information is displayed at the MEMORY display.
This error display is cleared when the settings below are made.
File No./ Directory mode switch (No. 3)

FD data recall (No. 4)
FD data delete (No. 5)
FD data save (No. 6)
FD data resave (No.7)
Memory mode switch (No. 8)
FD format (No.9)

In addition, the FD abnormal occurrence bit of the extended event
status register ESR2 (ERROR) bitl is set.

The following files are deleted according to the memory mode setting
status.

PATT mode: TT**.PTN

OTHERS mode: TT**.0TH

9-26

6) SAV

M Function

SECTION9 DETAILS OF DEVICE MESSAGES

FD data save (SAVe)
Saves set contents of PPG to FD

Header Program Query Response (Character No.)
SAV [SAVAm None None
B Valueofm Sets file name in range 0 to 99

B CommandType

B Usage Restrictions

B Usage Example

B Note

Numericrange: Max. value 99
Min. Value 0
Step 1

Overwrap command
The command is invalid under the following setting conditions.
Program: When the FD is being accessed

Program: When saving file contents of file No. 9 to PPG
OUTPUTAT7@@;"SAVAQ"

If the specified file does not exist, an error is returned and the error

information is displayed at the MEMORY display.

This error display is cleared when the settings below are made.
File No./ Directory mode switch (No. 3)

FD data recall (No. 4)
FD data delete (No. 5)
FD data save (No. 6)
FD data resave (No.7)
Memory mode switch (No. 8)
FD format (No.9)

In addition, the FD abnormal occurrence bit of the extended event
status register ESR2 (ERROR) bit1 is set.

The following files are saved according to the memory mode setting
status.

PATT mode: TT**.PTN

OTHERS mode: TT*%.0OTH

9-27

SECTION9 DETAILS OF DEVICE MESSAGES

7) RSV FD data resave (ReSaVe)

B Function Sets contents of FD to PPG

Header Program Query Response (Character No.)
RSV |RSVAm None None

M Valueofm Sets file name in range 0 to 99

Numericrange: Max.value 99
Min. Value 0
Step 1

B CommandType Overwrap command
B Usage Restrictions The command is invalid under the following setting conditions.
Program: When the FD is being accessed

B Usage Example Program: When overwriting file contents of file No. 9 to PPG
OUTPUTAT70@;"RSVA9"

B Note If the specified file does not exist, an error is returned and the error
information is displayed at the MEMORY display.
This error display is cleared when the settings below are made.
File No./ Directory mode switch (No. 3)

FD data recall (No. 4)
FD data delete (No. 5)
FD data save (No. 6)
- FD dataresave (No.7)
Memory mode switch (No. 8)
FD format (No.9)

In addition, the FD abnormal occurrence bit of the extended event
status register ESR2 (ERROR) bitl is set.

The following files are resaved according to the memory mode setting
status.

PATT mode: RR¥*.PTN or TT** PTN

OTHERS mode: TT**.0TH

9-28

8) MEM

B Function

SECTION9 DETAILS OF DEVICE MESSAGES

Memory mode switch (MEMory mode)
Performs PATTERN / OTHERS switch setting

Header Program Query Response (Character No.)
MEM |MEMAmMm MEM? MEMAmM (FIX 1)
B Valueofm @ : PATT mode

B CommandType
M Usage Restrictions

B Usage Example

B Note

1 . OTHERS mode

Sequential command

The command is invalid under the following setting conditions.
Program: When the FD is being accessed

Query: None

Program: When setting memory mode to PATT
OUTPUTA70@; "MEMAG"

Query: When setting memory mode to OTHERS
OUTPUTA70@; "MEM?"
ENTERA700;B$
PRINTABS

d
MEMA 1 (CR/LF) output

PATT mode means PATTERN mode.

In this case, the memory contents are the target of the PATTERN
section contents.

In the OTHERS mode, the contents of other sections are the memory
target.

If an error occurs during file access, etc., the error information is

displayed at the MEMORY display.

This error display is cleared when the settings below are made.
File No./Directory mode switch (No. 3)

FD data recall (No. 4)
FD data delete (No. 5)
FD data save (No. 6)
FD data resave (No.7)
Memory mode switch ~ (No.8)
FD format (No.9)

In addition, the FD abnormal occurrence bit of the extended event
status register ESR2 (ERROR) bit1 is set.

The following files are resaved according to the memory mode setting
status.
PATT mode: RR¥*.PTN or TT**.PTN
* OTHERS mode: TT*%.0TH

9-29

SECTIONS9 DETAILS OF DEVICE MESSAGES

9) FDF FD Format (FD Format)

B Function Formats floppy disk
Select the format type using FUNCTION SW3 on the rear panel. In
addition, the 2DD/2HD format is determined automatically from the
inserted floppy disk.

Header Program Query Response (Character No.)

FDF |FDF None None
B Valueofm None
B CommandType Overwrap command

9-30

Usage Limitations

Usage Example

Note

The command is invalid under the following setting conditions.

Program: When the FD is being accessed and when the File No./

Directory mode switch is the directory mode.

Program: When formatting floppy disk
OUTPUTAT70@;"FDF"

When an error is generated during file access. the error information is
displayed at the MEMORY display.
This error display is cleared when the settings below are made.

File No./ Directory mode switch (No.
(No.
(No.
(No.
(No.
(No.
(No.

FD data recall

FD data delete

FD data save

FD data resave
Memory mode switch
FD format

3)
4)
5)
6)
7)
8)
9)

In addition, the FD abnormal occurrence bit of the extended event
status register ESR2 (ERROR) bitl is set.

10) FSH?

B Function

SECTION9 DETAILS OF DEVICE MESSAGES

Search File Contents (File SeaRch)

Outputs information about data saved on the floppy disk
The target file names are as follows:

B Command T Type

B Usage Restrictions

B Usage Example

0 :
1

TT**.PTN
RR** PTN TT**.0TH
Header Program Query Response (Character No.)
FSH | None FSH? Aml FSHAmMZ ,m3 ,m4,mb
m2 (FIXT)
m3 (FIXT)
m4 (FIX 2)
mb (each FIX 2)
M Valueofm ml : Selects preceding and succeeding half File No.

Preceding half (No. 0 to No. 49)

: Succeeding half (No. 50 to No. 99)

m2 : Unused size

m3 : Used size

m4 : File No.

mb : Preceding half or succeeding half File No. only target file)

Sequential command

The command is invalid under the following setting conditions.

Query:

Query:

None

When File Nos. 1 to 10 exist on floppy disk (Unused size or
Used size are one example)

OUTPUTAT70@;"FSH?AQ"
ENTERA700:B$
PRINTABS

N
FSHAAT72294,A118132,10,01,02,03,04,05,06,
07,908,089, 10 (CR/LF)is output.

When there are no target files on the floppy disk
OUTPUTA700;"FSH?AQ"
ENTERA700;B$

PRINTABS$

!
FSHAAT23968,AANA6144,A0,-- (CR/LF) output

9-31

SECTION9 DETAILS OF DEVICE MESSAGES

10) FSH?
B Note

9-32

Search File Contents (File SeaRch) continued

The file contents search is executed according to the memory mode
switch (PATT / OTHERS) setting conditions.
(1) When memory mode switch is PATT
The files TT* . PTN and RR* *.PTN are searched.
(2) When memory mode switch is OTHERS
The file TT**.0TH is searched.

When a PATT file saved to FD on the MP1763B and a PATT file saved
to FD on the MP1764A have the same name, the file name saved on the
MP1763B takes priority and is output.

When searching the file contents, the information about the
immediately preceding information is output.

In addition, since this equipment does not have a function for detecting
an inserted floopy disk, the previous directory information is not
updated when the floppy disk is changed.

As a result, when inserting or changing a floppy disk, always switch to
the directory mode and update the directory information.

SECTION9 DETAILS OF DEVICE MESSAGES

11) FMD? Memory FD mode (memory Fd MoDe)
M Function Outputs floppy disk format type
Header Program Query Response (Character No.)
FMD | None FMD? FMDAmMm (FIX 1)
B Valueofm @ : 1440k
1: 720k
2 : 1232k
3 640 k
B Command Type Sequential command

B Usage Restrictions The command is invalid under the following setting conditions.
Query: None

B Usage Example Query: When formatting inserted 2DD FD in 1440 kB / 720 kB
format
OUTPUTAT7@@;"FMD?"
ENTERA700;B$
PRINTAB$

)
FMDA 1 (CR/LF) output

M Note Use FUNCTION SW3 on the back panel to select the MS-DOS format.
Since this setting is read at power-on, the setting is not updated until
the next power-on.
® Function SW3 = OFF

Sector Length Sector No. Track No.

Format Capacity [Byte/Sector] | [Sectors/Track] | [Tracks/Side]

1440 kB 512 18 80

720 kB 512 9 80

® FunctionSW3 = ON

Sector Length Sector No. Track No.

Format Capacity [Byte/Sector] | [Sectors/Track] | [Tracks/Side]

1232 kB 1024 8 7

640 kB 512 8 80

When no floppy disk is inserted when this query is executed, the 1440
kB or 1232 kB information is output in accordance with the currently-
set FDD condition (FUNCTION SW3).

9-33

SECTION9 DETAILS OF DEVICE MESSAGES

12) MAC? FD access status (Memory Access Condition)
B Function Output floppy disk access conditions
Header Program Query Response (Character No.)
MAC |None MAC? MACAM (FIX 1)
B Valueofm @ : Non-access condition
1 : Accesscondition
B CommandType Sequential command
B Usage Restrictions The command is invalid under the following setting conditions.

M Usage Example

9-34

Query:

Query:

None

When the FD is not being accessed

OUTPUTA70@; "MAC?"

ENTERAT700;B$

PRINTAB$

!

MACA® (CR/LF) output

13) FDE?

M Function

SECTION9 DETAILS OF DEVICE MESSAGES

FD Error message (FD Error message)

Outputs FD error message

Header Program Query Response (Character No.)
FDE |None FDE? FDEAM (FIX 2)
B Valueofm Error messages

B CommandType

B Usage Restrictions

B Usage Example

H Note

@ EO0 (Error due to different format type)
1 E1 (Write protected at overwrite)
2 E2 (Insufficient space at overwrite)
3 E3 (No specified file at read)
4 E4 (Attempt to save as same file name)
b E5 (Overwrite error)
6 E6 (Read error)
7 E7 (DMA send error)
8 E8 (Other error)
9 E9 (Hardware error)
10 No error

Sequential command

The command is invalid under the following setting conditions.

Query: None

Query: When hardware error occurs

OUTPUTAT70@;"FDE?"

ENTERA70@;B$
PRINTABS
N

FDEA9 (CR/LF) output

This error display is cleared when the settings below are made.
File No./ Directory mode switch (No. 3)
FD data recall (No. 4)
FD data delete (No. 5)
FD data save (No. 6)
FD data resave (No.T)
Memory mode switch (No. 8)
FD format (No.9)

In addition, the FD abnormal occurrence bit of the extended event

status register ESR2 (ERROR) bit1 is set.

9-35

SECTION9 DETAILS OF DEVICE MESSAGES
® PATTERN Section

The following pages show each control messages for the PATTERN section.

The A in the strings indicates a space.

9-36

14) LGC

B Function

SECTION9 DETAILS OF DEVICE MESSAGES

Pattern Logic (LoGiC mode)

Sets data logic

The relationship with the logic and the actual data output are different
between ALTERNATE /DATA /ZERO SUBST and PRBS. (Refer to the
functions and operation manual.)

Header Program Query Response (Character No.)

LGC |LGCAmM LGC? LGCAm (FIX 1)
B Valueofm @ : Positive
1 : Negative

B CommandType

M Usage Restrictions

B Usage Example

H Note

Sequential command

The command is invalid under the following setting conditions.

Program: When the FD is being accessed

Query: None

Program: When setting pattern logic to positive logic (Positive)

OUTPUTAT700;"LGCAB"

Query: When pattern logic set to negative logic (Negative)
OUTPUTA70@;"LGC?"

ENTERA700;B$

PRINTABS

LGCA 1 (CR/LF) output

When the pattern is PRBS mode, the pattern mark ratio is also
switched according to the logic when the pattern logic is set.

® Positivelogic 0/8, 1/8,1/4,1/2

e Negative logic 8/8, 7/8, 3/4, 1/2

9-37

SECTION9 DETAILS OF DEVICE MESSAGES

15) PTS

B Function

Generation pattern selection (PaTtern Select)

Sets generation pattern

Header Program Query Response (Character No.)
PTS |PTSAm PTS? PTSAmMm (FIX 1)
M Valueofm @ : Alternate
1: Data
2 : Zerosubst
3 : PRBS

B CommandType

B Usage Restrictions

B Usage Example

B Note

9-38

Sequential command

The command is invalid under the following setting conditions.

Program: When the FD is being accessed

Query: None

Program: When setting generation pattern to Alternate

OUTPUTAT70@;"PTSAB"

Query: When generation pattern logic set to Data

OUTPUTAT70@;"PTS?"

ENTERAT70@;B$
PRINTABS
!

PTSA1(CR/LF) output

When switching the generation pattern, the setting conditions of each

previous pattern are returned.
For example, when setting to the PRBS pattern, the PRBS pattern

stage and pattern mark ratio setting are returned.

16) PTN

B Function

SECTION9 DETAILS OF DEVICE MESSAGES

ZERO SUBST / PRBS stage
(zero subst / prbs PaTterN mode)

Sets ZERO SUBST / PRBS pattern

Header Program Query Response (Character No.)
PTN |PTNAmMm PTN? PTNAM (FIX 1)
B Valueofm AtZERO SUBST AtPRBS

B Command Type

B Usage Example

2: 27 2:2"—1
3: 2° 3:29-1
5: gt 5. 2ll—1
6: 2% 6: 2%—1
7. 2%0-1
8: 28—1
9: 2811

The command is invalid under the following setting conditions.

Program: When the FD is being accessed and when the generation
pattern is Alternate or Data

Query: The command is invalid under the following setting
conditions and ERR (CR / LF) is output.
When the generation pattern is Alternate or Data

Program: When setting generation pattern to PRBS 2" —1
OUTPUTAT@@;"PTNAZ2"

Query: When generation pattern logic set to PRBS 23 —1
OUTPUTAT700;"PTN?"
ENTERA700:B$
PRINTABS

2
PTNA9 (CR/LF) output

When generation pattern set to DATA
OUTPUTAT@@;"PTN?"
ENTERA700;B$

PRINTABS

{
ERR (CR/LF) output

9-39

SECTION9 DETAILS OF DEVICE MESSAGES

17) MRK

B Function

PRBS mark ratio (MaRK ration mode)
Sets mark ratio at PRBS pattern

Header Program Query Response (Character No.)
MRK |MRKAmM MRK? MRKAm (FIX 1)
B Valueofm When positive logic (Positive) =~ When negative logic (Negative)

B CommandType

B Usage Restrictions

B Usage Example

9-40

0 :
1:
2 :
3:

0/8 8/8
1/8 7/8
1/4 3/4
1/2 1/2

Sequential command

The command is invalid under the following setting conditions.

Program: When the FD is being accessed and when the generation

Query:

Program:

Query:

pattern is Alternate, Data or Zero Subst

The command is invalid under the following setting

conditions and ERR (CR/ LF) is output.

When the generation pattern is Alternate, Data or Zero

Subst

When setting pattern mark ratioto 0/8
OUTPUTAT70@; "MRKAB"

When pattern mark ratio set to 1/8
OUTPUTAT700; "MRK?"

ENTERA700;BS
PRINTABS

2
MRKA 1 (CR/LF) output

When generation pattern set to DATA
OUTPUTAT700; "MRK?"
ENTERA700;B$

PRINTABS

!
ERR (CR/LF) output

18) ALT

B Function

SECTION9 DETAILS OF DEVICE MESSAGES

Alternate pattern A/B display switch (ALTernate a/ b)
Sets alternate pattern A /B display switch

Header Program Query Response (Character No.)

ALT |ALTAmMm ALT? ALTAmM (FIX 1)
B Valueofm @ : Apattern
1 : Bpattern

B CommandType
B Usage Restrictions

B Usage Example

Sequential command
The command is invalid under the following setting conditions.

Program: When the FD is being accessed and when the generation
patternis DATA, ZERO SUBST, or PRBS

Query: The command is invalid under the following setting
conditions and ERR (CR / LF) is output.
When the generation pattern is DATA, ZERO SUBST, or
PRBS

Program: When switching alternate display to A
OUTPUTAT7@@;"ALTAB"

Query: When alternate display set to A
OUTPUTAT@0;"ALT?"
ENTERA700;B$
PRINTABS

d
ALTA 1 (CR/LF)output

When generation pattern set to PRBS
OUTPUTAT7@@;"ALT?"
ENTERA700;B$

PRINTABS

!
ERR (CR/LF) output

9-41

SECTION9 DETAILS OF DEVICE MESSAGES

19) EAD Error Insertion (Error ADdition)
B Function Inserts specified allocation code error at 1 route in 32 routes
Header Program Query Response (Character No.)
EAD |EADAmM EAD? EADAM (FIX 1)
B Valueofm At Internal Error Insertion At External Error Insertion
(EEIAD) (EEIAD)
@ : OFF (No error insertion) @ : OFF (No error insertion)
1:1x10 1 : ON (Error insertion)
2:1x107°
3:1x10°°
4 :1x1077
b:1x108
6:1x107°
7 : SINGLE
B Command Type ‘Sequential command

B Usage Restrictions The command is invalid under the following setting conditions.

Program: When the D is being accessed

Query:

None

B Usage Example Program: When inserting 1 X 10~®error
g p g g

Query:

OUTPUTAT70@;"EAD 2"

When 1 X 107 % error inserted
OUTPUTAT70@;"EAD?"
ENTERAT700;B%
PRINTABS

)
EADA1 (CR/LF) output

B Note v When switching between external and internal error insertion, the

previous conditions are set.

For example, when external error insertion is set to ON after 1 X 1078

was set at internal error insertion, the error insertion rate becomes 1 X

10~® when switching to internal error insertion.

9-42

SECTION9 DETAILS OF DEVICE MESSAGES

20) LPT Alternate A /B loop times (LooP Time)
B Function Sets currently-displayed pattern loop times from A or B pattern
Header Program Query Response (Character No.)
LPT |LPTAmMm LPT? LPTAmM (FIX 3)
B Valueofm The number of loop times is set in the following range.

B CommandType

B Usage Restrictions

B Usage Example

Min. value: 1
Max. value: 127
Step: 1

The response is as follows:
LPTAAAT1 (min. value)

LPTA127 (max. value)
Sequential command
The command is invalid under the following setting conditions.

Program: When the FD is being accessed and when a generation
pattern other than ALTERNATE is set

Query: The command is invalid under the following setting
conditions and ERR (CR/LF) is output.
When a generation pattern other than ALTERNATE is set

Program: When setting loop times to 10 times

OUTPUTAT708;"LPTA 10"

Query: When loop times is set to 17 times
OUTPUTAT70@;"LPT?"
ENTERA700;B$
PRINTABS

)
LPTAA17 (CR/LF) output

When generated pattern is set to DATA
OUTPUTAT0Q;"LPT?"

ENTERA 700 ;B$

PRINTABS

N
ERR (CR/LF) output

9-43

SECTION9 DETAILS OF DEVICE MESSAGES

21) DLN Data length (Data LeNgth)
B Function Generation data length is specified when the generation pattern is
ALTERNATE or DATA.
Header Program Query Response (Character No.)
DLN |DLNAmMm DLN? DLNAmM (FIX7)
B Valueofm The data length is set in the following range.
® Alternate Pattern ® Data Pattern
Max. value: 4194304 - Max. value: 8388608
Min. value: 128 Min value: 2
Step: 128 Step: Divided into following
range according to data
length
Data length

2~ 65536bits/step 1 bit
65536 ~ 131072 bits/step 2 bits
- 131072~ 262144 bits/step 4 bits
262144 ~ 524288 bits/ step 8 bits
524288 ~ 1048576 bits/step 16 bits
1048576 ~ 2097152 bits/step 32 bits
2097152 ~ 4194304 bits/step 64 bits
4194304 ~ 8388608 bits/step 128 bits

B Command Type Sequential Command
B Usage Restrictions The command is invalid under the following setting conditions.

Program: When the FD is being accessed and when the generation
pattern is ZERO SUBST and PRBS

Query: The command is invalid under the following setting
conditions and ERR (CR/ LF) is output.
When the generation pattern is ZERO SUBST and PRBS

9-44

21) DLN
M Usage Example

Query:

B Note

SECTION9 DETAILS OF DEVICE MESSAGES

Data length (Data LeNgth) continued
Program: When setting data length to 4 bits

OUTPUTAT7@0; "DLNA4"

When data length set to 32 bits
OUTPUTAT700;"DLN?"
ENTERA70@;B$
PRINTABS

I
DLNAAAAANAZZ (CR/LF) output

When generation pattern set to PRBS
OUTPUTA70@;"DLN?"
ENTERA700;B$

PRINTABS

!
ERR (CR/LF) output

When the data length setting has been set to a non-existent value, the

data length is set to the best value as shown below.

Changed to value smaller than and closest to input value
Example) @

Input data length °
131075

Set data length
131072

—>——

9-45

SECTION9 DETAILS OF DEVICE MESSAGES

22) ZLN ZERO SUBST length (Zero subst LeNgth)
M Function Sets zero substitution bit length when generation pattern is ZERO
SUBST
Header Program Query Response (Character No.)
ZLN |[ZLNAmMm ZLN? ZLNAmMm (FIX 5)
B Valueofm The zero substitution bit length is set in the following range.

B Command Type

B Usage Restrictions

M Usage Example

9-46

Max. value: Following range according to ZERO SUBST stage

2" 127
2° 511
21 . 2047
21 . 32767

Min. value: 1

Step:

1

Sequential command

The command is invalid under the following setting conditions.

Program:

Query:

Program:

Query:

When the FD is being accessed and when the generation
pattern is ALTERNATE, DATA and PRBS

The command is invalid under the following setting
conditions and ERR (CR/LF) is output.

When the generation pattern is ALTERNATE, DATA and
PRBS

When setting ZERO SUBST length to 1 bit
OUTPUTAT700;"ZLNAL"

When ZERO SUBST length set to 127 bits
OUTPUTAT7@@;"ZLN?"
ENTERA700;B$

PRINTABS

2
DLNAAA127 (CR/LF) output

When generation pattern set to PRBS
OUTPUTAT700;"ZLN?"
ENTERA700;B$

PRINTABS

)
ERR (CR/LF) output

23) ADR
PAG

B Function

SECTION9 DETAILS OF DEVICE MESSAGES

Page number (ADdRess / PAGe)

Sets page number

Header Program Query Response (Character No.)
ADR |ADRAmMm ADR? v ADRAmM (FIX9)
PAG |PAGAM PAG? PAGAM (FIX 9)

"l Valueofm The page number is set in the following range.

B CommandType

M Usage Restrictions

B Usage Example

Max. value: 134217728
Min. value: 1
Step: 1

Sequential Command
The command is invalid under the following setting conditions.

Program: When the FD is being accessed and when the display is the
pattern sync position

Query: The command is invalid under the following setting
conditions and ERR (CR/ LF) is output.
When the display is the pattern sync position

Program: When setting page to 1 page
OUTPUTAT7@@;"PAGAL"

Query: When page number is set to 16000 pages
OUTPUTAT70@;"PAG?"
ENTERA700;B$
PRINTABS

i)
PAGAAAAN1600D (CR/LF) output

When display is pattern sync position
OUTPUTAT7@@;"PAG?"
ENTERA700;B$

PRINTABS

2
ERR (CR/LF) output

9-47 .

SECTION9 DETAILS OF DEVICE MESSAGES

23) ADR
PAG
B Note

9-48

Page number (ADdRess / PAGe) continued

There are two page number setting commands: ADR and PAG, but
there function is the same.

However, the maximum settable page number varies according to the
set generation pattern and the value set for the data length.

In addition, the maximum value of m above cannot exceed 1342177278
when a value exceeding the maximum settable page number is input,
the value is changed to the maximum page number.

Example: At data length 32, displayed page number 1 and maximum
page number 2, when PAGA 3 is input, the displayed page
number becomes 2.

The maximum page number cannot be a value exceeding the data
length/ 16; if there is a remainder, page number is set to the result of
the division +1.

For equipment not having the DISPLAY key near the center of the
pattern section, there is no ERR output for a query.

In addition, the program command is valid except when the FD is being
accessed.

SECTION9 DETAILS OF DEVICE MESSAGES

B CommandType

B Usage Restrictions

24) BIT Pattern bit (pattern BIT)
B Function Sets bit pattern
Header Program Query Response (Number of characters)
BIT |e NRI1format BIT? The bit contents from the set page
BITAmM number to the max. 8 page part, and up to
o HEX format the max. pattern set page, are output in
BITA#Hm the following format.
PAGA skkskskskskskkk
BITA#HNksksk #Hkkskk, ...,
#H* kK k
“]
Y
Displayed as HEX together with bit
pattern output header page.
Mazx. 8 page part (FIX 4 each)
B Valueofm The bit pattern is set in the following range.

® NR1 format o HEX format
Max. value: 65535 Max. value: FFFF
Min. value: 0 Min. value: 0
Step: 1 Step: 1

Sequential command
The command is invalid under the following setting conditions.

Program: When the FD is being accessed and when the generation
patternis ZERO SUBST and PRBS

Query: None

9-49

SECTIONS DETAILS OF DEVICE MESSAGES

24) BIT Pattern bit (pattern BIT) continued
B Usage Example Program: When setting bit pattern from currently set page to page 3

Query:

OUTPUTAT700;"BITA10,20,30"
OUTPUTAT700; "BITA#HFFFF,#H1000,#H2000"

The bit pattern can be set for continuous pages by separating
the data with a comma (,).

When setting the page number and the bit pattern from that

page number to page 4

OUTPUTAT700;"PAGA10;BITA10,20,30,40"

OUTPUTAT700;"PAGA 1@ ;BITA#HFFFF,#H1000,
#H2000 , #H3000"

When display page is 1 and maximum obtainable page
number is 10 and reading data from page 1 to page 8
OUTPUTAT70@;"BIT?"
ENTERAT700;B$
PRINTABS
!
PAGA *k3kskkkkkk1; BITA#HO0OOD , #H0000 ,
#HOD00 , #HO00D , #H00DD ,
#H0000 , #H000 , #H0000
(CR/LF) output

B Note The pattern bits for continuous pages (max. 8 pages) can be set by
separating the data with commas (,) for both NR1 and HEX formats.

Bit 1 and bit 16 of the bit display can be set and respond as the LSB and
MSB, respectively.
For example, when 32768 is set, the MSB (bit 16) becomes 1.

9-50

25) ALL

B Function

SECTION9 DETAILS OF DEVICE MESSAGES

Pattern data preset (All pages, All bits) (preset ALL)

Sets all bits of all pages of pattern data to Os or 1s

Header Program Query Response (Character No.)
ALL |ALLAmM None None
- Bl Valueofm @ : Allpagesclear

B Command Type

Usage Restrictions

B Usage Example

B Note

1 : Allpagesset
Sequential command
The command is invalid under the following setting conditions.

Program: When the FD is being accessed and when the generation
pattern is ZERO SUBST and PRBS

Program: When clearing all pages when generation pattern is DATA

OUTPUTAT700;"ALLAG"

Clears data of all pages

When the generation pattern is ALTERNATE pattern, the A or B
pattern is preset according to the A/ B display switch (No. 18) condition.

For example, when the A pattern is displayed, only the A pattern is
preset when this command is executed.

9-51

SECTION9 DETAILS OF DEVICE MESSAGES

26) PST Pattern data preset (1 page, All bits) (PreST)

B Function Sets all bits of page 1 of pattern data to Os or 1s

Header Program Query Response (Character No.)
PST |PSTAm None None

B Valueofm @ : Pagelclear

M CommandType

B Usage Restrictions

B Usage Example

B Note

9-52

1 : Pagelset
Sequential command
The command is invalid under the following setting conditions.

Program: When the FD is being accessed and when the generation
pattern is ZERO SUBST and PRBS

Program: When clearing page 1 when generation patternis DATA

OUTPUTAT0@;"PSTAB"
Clears data for page 1 of set pages

When the generation pattern is ALTERNATE pattern, the A or B
pattern is preset according to the A/ B display switch (No. 18) condition.

For example, when the A pattern is displayed, only the A pattern is
preset when this command is executed.

27) PSP

B Function

SECTION9 DETAILS OF DEVICE MESSAGES

Pattern sync trigger position (Pattern Sync Position)

Sets trigger sync position of pattern sync (variable)

Header Program Quéry Response . (Character No.)
PSP |PSPAmM PSP? PSPAMm (FIX 9)
B Valueofm The pattern sync position is set in the following range.

B Command Type

M Usage Restrictions

Max. value: Differs according to generation pattern

PRBS7, ZEROSUBST.7 : 8
PRBS9, ZEROSUBST.11: 32
PRBS11, ZERO SUBST. 11: 128
PRBS15, ZERO SUBST. 15 : 2048
PRBS20 : 65536
PRBS23 : 524288
PRBS31 © 134217728
DATA : (bit length/16) + alpha

If the result of the division is not an
integer, alpha = 1.
Ifit is an integer, alpha = 0.

Min. value: 1

Step: 1

The response is as follows:
PSPAAAAANANNAAT (Min. value)

PSPA 134217728 (Max. value)
Sequential command
The command is invalid under the following setting conditions.
Program: When the FD is being accessed and when the display is page

Query: The command is invalid under the following setting
conditions and ERR (CR/ LF) is output.
When the display is page

9-53

SECTION9 DETAILS OF DEVICE MESSAGES

27) PSP

B Usage Example

9-54

Pattern sync trigger position (Pattern Sync Position)
continued

Program: When setting pattern sync position to page 3

Query:

OUTPUTAT70@;"PSPA3"

When pattern sync position set to page 189
OUTPUTAT700;"PSP?"
ENTERA700;B$

PRINTABS

N
PSPAAANNNANL8Y (CR/LF) output

When display is page
OUTPUTAT70@;"PSP?"
ENTERA700;BS$
PRINTAB$

)
ERR (CR/LF) output

SECTION9 DETAILS OF DEVICE MESSAGES

B CommandType

B Usage Restrictions

M Usage Examples

28) PPD Page number/Pattern sync trigger position display switch
(Page / Pattern sync position Display)
‘M Function Switches page number and pattern sync trigger position display
Header Program Query Response (Character No.)
PPD |PPDAmM PPD? PPDAmM (FIX 1)
B Valueofm @ : Page number display

1 : Pattern sync position display

Sequential command

The command is invalid under the following setting conditions.

Program: When the FD is being accessed and when the display is page

Query: None

Program: When displaying pattern sync trigger position

OUTPUTA70@;"PPDA1"

Query: When page number is displayed
OUTPUTAT70@;"PPD?"
ENTERA700;BS#

PRINTABS

PPDA®@ (CR/LF) output

9-55

SECTIONS9 DETAILS OF DEVICE MESSAGES
® OQUTPUT Section

The following pages show each control message for the OUTPUT section.

The A in the strings indicates a space.

9-56

29) DTM

B Function

SECTION9 DETAILS OF DEVICE MESSAGES

Data output termination voltage (Data TerMination)

Sets data output termination voltage

Header Program Query Response (Character No.)
DTM |DTMAM DTM? DTMAm ' (FIX 1)
M Valueofm @ : GND

B Command T Type

B Usage Restrictions

B Usage Example

1: —-2V(ECL)

Sequential command

The command is invalid under the following setting conditions.

Program: When the FD is being accessed

Query: None

Program: When setting data output termination voltage to GND
OUTPUTAT7@@;"DTMAG"

Query: When data output termination voltage setto =2V
OUTPUTA70@;"DTM?"

ENTERA700;B$
PRINTABS

DTMA 1 (CR/LF) output

9-57

SECTION9 DETAILS OF DEVICE MESSAGES

30) CTM Clock1 output termination voltage (Clock TerMination)

B Function Sets clock output termination voltage

Header Program Query Response (Character No.)
CTM {CTMAmMm CTm? CTMAmM (FIX 1)

B Valueofm @ : GND

B CommandType

B Usage Restrictions

B Usage Example

9-58

1. —-2V(ECL)

Sequential command

The command is invalid under the following setting conditions.
Program: When the FD is being accessed

Query: None

Program: When setting clock output termination voltage to GND
OUTPUTAT72@;"CTMAQ"

Query: When clock output termination voltage set to —2V
OUTPUTAT70@;"CTM?"
ENTERA700;B$
PRINTABS$

d
CTMA 1 (CR/LF) output

31) OFS

B Function

SECTION9 DETAILS OF DEVICE MESSAGES

Offset reference value (OFSset)
Sets DATA / DATA / CLOCK output offset reference value

Header Program Query Response (Character No.)
OFS [OFSAm OFS? OFSAm (FIX 1)
M Valueofm @ : Offset reference value VOH

B Command Type

B Usage Restrictions

B Usage Example

B Note

1 : Offset reference value VTH
2 : Offset reference value VOL

Sequential command

The command is invalid under the following setting conditions.
Program: When the FD is being accessed

Query: None

Program: When setting offset reference voltage to VOL
OUTPUTA700;"0FSA2"

Query: When offset reference voltage set to VTH
OUTPUTA 700 ;"0FS?"
ENTERA700;B$
PRINTAB$

2
OFSA1 (CR/LF) output

The outline of the offset reference voltage is shown below.

- VOH
>< >< <«—— VTH
-« VOL
When setting the offset reference voltage, the display of each output
offset voltage is updated to the best value at that time.

9-59

SECTIONS DETAILS OF DEVICE MESSAGES

32) DAP

B Function

Data output amplitude (Data AmPlitude)
Sets DATA / DATA output amplitude

Header Program Query Response (Character No.)
DAP [DAPAmM DAP? DAPAM (FIX 5)
M Valueofm Numericrange: Max. value: 2.000

B Command Type

B Usage Restrictions

M Usage Example

9-60

Min. value: 0.250
Step: 0.002

However, when Option 03 (1/4 output) is installed, when the display is
1/4 SPEED, 1/ 4 output amplitude setting can be performed at the
following numeric range.

Numericrange: Max. value: 2.000
Min. value: 0.500
Step: 0.002

Sequential command
The command is invalid under the following setting conditions.

Program: When the FD is being accessed. When Option 03 is not
installed, 1/ 4 output amplitude setting is disabled.

Query: None

Program: When setting data amplitude to 1.2 V
OUTPUTA70@;"DAPAL.2"

Query: When data amplitude set to 0.5 V
OUTPUTAT70@;"DAP?"
ENTERA700;B$
PRINTABS

2
DAPA@.50@ (CR/LF) output

SECTION9 DETAILS OF DEVICE MESSAGES

32) DAP Data output amplitude (Data AmPlitude) continued
B Note DATA /DATA tracking set to off, only data output amplitude is set.

9-61

SECTION9 DETAILS OF DEVICE MESSAGES

33) NAP DATA output amplitude (iNverted AmPlitude)

B Function Sets DATA output amplitude

Header Program Query Response (Character No.)
NAP |NAPAmMm NAP? NAPAmM (FIX 5)

B Valueofm The DATA output amplitude setting range is set from 0.25 V to 2.0 V.

B CommandType

B Usage Restrictions

B Usage Example

9-62

Numeric Range

Max. value: 2.000

Min. value: 0.250

Step:

Sequential command

0.002

The command is invalid under the following setting conditions.

Program: At DATA /DATA tracking on
When the display is 1/4 SPEED when Option 03 is installed
When the FD is being accessed

Query:

Program:

Query:

The command is invalid under the following setting

conditions and ERR (CR/LF) is output.

At DATA/DATA tracking on
When the display is 1/4 SPEED when Option 03 is installed

When setting DATA amplitude to 1.2 V

OUTPUTA700; "NAPAL.2"

When DATA amplitude set to 0.5V

OUTPUTAT70@; "NAP?"

ENTERA700;BS

PRINTABS

!

NAPA®D.500 (CR/LF) output

34) DOS

B Function

SECTION9 DETAILS OF DEVICE MESSAGES

Data output offset (Data OffSet)
Sets DATA / DATA output offset

Header Program Query Response v (Character No.)
DOS |DOSAm DOS? DOSAmM (FIX 6)
M Valueofm The DATA output offset setting range differs according to the setting of

the offset reference value. When the offset reference value is VOH, the
valueis setfrom —2.0 Vto +2.0V.

Numeric Range Max. value: 2.000
Min. value: —2.000
Step: 0.001

When the offset reference value is VTH, the value is set from —3.0 V to
+1.875V.

Numeric Range Max. value: 1.875
Min. value: —3.000
Step: 0.001

When the offset reference value is VOL, the value is set from —4.0 V to
+1.75V.

Numeric Range Max. value: 1.750
Min. value: —4.000
Step: 0.001

When Option 03 is installed and the display is 1/4 SPEED, the1/4
DATA output offset reference value is set in the following range.

When the offset reference value is VOH, the value is set from —1.5 V to
+1.5V.

Numeric Range Max. value: 1.500
Min. value: —1.500
Step: 0.001

When the offset reference value is VTH, the value is set from —2.5 V to
+1.25V.

Numeric Range Max. value: 1.250
Min. value: —2.500
Step: 0.001

When the offset reference value is VOL, the value is set from —3.5 V to
+1.0V.

Numeric Range Max. value: 1.000
Min. value: —3.500
Step: 0.001

9-63

SECTION9 DETAILS OF DEVICE MESSAGES

34) DOS
B Command Type
B Usage Restrictions

B Usage Example

B Note

9-64

Data output offset (Data QffSet) continued
Sequential command

The command is invalid under the following setting conditions.
Program: When the FD is being accessed

Query: None

Program: When setting offset to —1.2V
OUTPUTAT700;"DOSA-1.2"

Query: When offset set to 0.5 V
OUTPUT7@@;"DOS?"
ENTERA700;B$
PRINTABS$

)
DOSAAD.500 (CR/LF) output

The only data output off set is set at DATA / DATA tracking off.

When Option 03 is installed and the display is 1/4 SPEED, the1/4
output offset is set.

The settable offset range differs according to the set output amplitude
as shown on the next page.

SECTION9 DETAILS OF DEVICE MESSAGES

> 1/1SPEED
Py Offset reference value: Voy
o]
._
-
=
(-2.0, 2.0) - (2.0, 2.0)
0, 2. — 0, 2.
T 15
T 1.0
(- 2.0, 0.25) 0.5 (2.0, 0.25)
1 1 1 1 1 1 1 1
-4.0-3.0-20-100 1.0 2.0 3.0 OFFSET(V)
> 1/1SPEED
o Offset reference value: Vry
D
'—.
s
(-3.0, 2.0) - (1.0, 2.0)
e 20\ 7
T 15
T 1.0
(- 2.125, 0.25) 0.5 (1.875, 0.25)
1 1 1 1 1 1 1 1
-40-3.0-20-100 1.0 20 3.0 OFFSET(V)

9-65

SECTION9 DETAILS OF DEVICE MESSAGES

> 1/1SPEED
o Offset reference value: Vg,
D
'—
=
=
(-4.0, 2.0) 55K (0.0, 2.0
15 |
1.0 |
(- 2.25, 0.25) 0.5 (1.75, 0.25
)| 1 1 1 1 1 1 1
-40-3.0-20-1.0 0 1.0 20 3.0 OFFSET(V)

> 1/4 SPEED
a Offset reference value: Vpy
D
’—
s
<

~15, 2.0 1.5, 2.0

() 20 ()

T 15
T 10
~15, 0. 5, 0.
(=15, 0.5) = (15,05)

1 1 |

1

-40-3.0-20-100

9-66

1.0 2.0 3.0 OFFSET (V)

(-2.5, 2.0)

SECTION9 DETAILS OF DEVICE MESSAGES

1/4 SPEED
Offset reference value: Vyy

AMPL I TUDE(V)

(-1.75, 0.5)

2.0

1.5

1.0

(0.5, 2.0)

1

0.5

(1.25, 0.5)

1 1 1 1

-4.0-3.0-20-1.00 1.0 2.0 3.0 OFFSET(V)

g 1/4SPEED
Py Offset reference value: Vg
2
(-0.5, 2.0 %
-0.5, 2.
(-3.5, 2.0))\~—
(-2.0, 0.5 (1.5, 0.5)
1 1 1 1 | 1 1 1
-40-3.0-2.0-1.0 0 1.0 2.0 3.0 OFFSET (V)

9-67

SECTION9 DETAILS OF DEVICE MESSAGES

35) NOS

B Function

DATA output offset (INverted data OffSet)
Sets DATA output offset

Header Program Query Response (Character No.)
NOS |NOSAm NOS? NOSAm (FIX 6)
B Valueof m The DATA output offset setting range differs according to the setting of

B Command Type

B Usage Restrictions

9-68

the offset reference value. When the offset reference value is VOH, the
valueissetfrom —2.0Vto +2.0V.

Numeric Range Max. value: 2.000
Min. value: —2.000
 Step: 0.001

When the offset reference value is VTH, the value is set from —3.0 V to
+1.875V.

Numeric Range Max. value: 1.875
Min. value: —3.000
Step: 0.001

When the offset reference value is VOL, the value is set from —4.0 V to
+1.75V.

Numeric Range Max. value: 1.75
Min. value: —4.000
Step: 0.001

The command is invalid under the following setting conditions.

Program: At DATA/DATA tracking on
When the display is 1/ 4 SPEED when Option 03 is installed
When the FD is being accessed

Query: The command is invalid under the following setting
conditions and ERR (CR/LF) is output.
At DATA/DATA tracking on
When the display is 1/4 SPEED when Option 03 is installed

35) NOS
B Usage Example

Query:

H Note

SECTION9 DETAILS OF DEVICE MESSAGES

DATA output offset (iNverted data OffSet) continued
Program: When setting DATA offset to 1.2V

OUTPUTAT70@; "NOSA1.2"

When DATA amplitude set to 0.5 V
OUTPUTAT7@@; "NOS?"
ENTERA700;B$

PRINTABS

)
NOSA@.50@ (CR/LF) output

When Option 02 installed
OUTPUTAT7@@; "NOS?"
ENTERA700;B$
PRINTABS$

2
ERR (CR/LF) output

The offset settable range is the same as the 1/1 SPEED data offset

setting (DOS).

9-69

SECTION9 DETAILS OF DEVICE MESSAGES

36) CDL

B Function

Clock1 output delay time (Clock1 DeLay)
Sets delay time between Clockl and DATA / DATA

Header Program Query Response (Character No.)
CDL |CDLAm cbL? CDLAmM (FIX 5)
B Valueofm The Clock1 output phase setting range is 500 ps to —500 ps.

B Command T Type

B Usage Restrictions

B Usage Example

9-70

Numeric range Max. value: 500 ps
Min. value: —500 ps
Step: 1

Sequential command
The command is invalid under the following setting conditions.

Program: When the display is 1/4 SPEED when Option 03 is installed
When the FD is being accessed

Query: The command is invalid under the following setting
conditions and ERR (CR/LF) is output.
When the display is 1/ 4 SPEED when Option 03 is installed

Program: When setting clock delay time to — 100 ps
OUTPUTAT7@@;"CDLA-100"

Query: When clock delay time set to 100 ps
OUTPUTAT7@@;"CDL"
ENTERA700;B$
PRINTABS

)
CDLAA A 1@ (CR/LF) output

37) CAP

B Function

SECTION9 DETAILS OF DEVICE MESSAGES

Clock1 output amplitude (Clock1 AmPlitude)

Sets Clock1 output amplitude

Header Program Query Response (Character No.)
CAP |CAPAmM CAP? CAPAmM (FIX 5)
M Valueofm The Clock1 output amplitude setting range is set in the range 0.25 V to

B Command Type

B Usage Restrictions

M Usage Example

20V

Numeric range Max. value: 2.000
Min. value: 0.250
Step: 0.002

When Option 03 is installed and the display is set to 1/4 SPEED, the
output amplitude rangeis 0.5 Vto 2.0 V.

Numeric range Max. value: 2.000
Min. value: 0.500
Step: 0.002

Sequential command

The command is invalid under the following setting conditions.
Program: When the F'D is being accessed

Query: None

Program: When setting Clock1 output amplitude to 1.5V
OUTPUTA700;"CAPAL1.H"

Query: When Clock1 output amplitude set to 0.25 V
OUTPUTAT700;"CAP?"
ENTERA700;BS
PRINTABS

!
CAPA®. 2506 (CR/LF) output

9-71

SECTION9 DETAILS OF DEVICE MESSAGES

38) COS

B Function

Clock1 output offset (Clock1 OffSet)

Sets Clock1 output amplitude

Header Program Query Response (Character No.)
COS |COSAm C0S? COSAm (FIX 6)
B Valueofm The Clock1 output offset setting range differs according to the setting of

B Command T Type

9-72

the offset reference value. When the offset reference value is VOH, the
value is set from —2.0 Vto +2.0V.

Numeric Range Max. value: 2.000
Min. value: —2.000
Step: 0.001

When the offset reference value is VTH, the value is set from —3.0 V to
+1.875V.

Numeric Range Max. value: 1.875
Min. value: —3.000
Step: 0.001

When the offset reference value is VOL, the value is set from —4.0 V to
+1.75V.

Numeric Range Max. value: 1.750
Min. value: —4.000
Step: 0.001

When Option 03 is installed and the display is 1/4 SPEED, the 1/4
DATA output offset reference value is set in the following range.

When the offset reference value is VOH, the value is set from —1.5 V to
+1.5V.

Numeric Range Max. value: 1.500
Min. value: —1.500
Step: 0.001

When the offset reference value is VT'H, the value is set from — 2.5V to
+1.25V.

Numeric Range Max. value: 1.250
Min. value: —2.500
Step: 0.001

When the offset reference value is VOL, the value is set from —3.5 V to
+1.0V.

Numeric Range Max. value: 1.000
Min. value: —3.500
Step: 0.001

Sequential command

38) COS
B Usage Restrictions

B Usage Example

B Note

SECTION9 DETAILS OF DEVICE MESSAGES

Clock1 output offset (Clock1 OffSet) continued

The command is invalid under the following setting conditions.
Program: When the FD is being accessed
Query: None

Program: When setting Clock1 output offset to 1.5V
OUTPUTA708;"C0OSA1.5"

Query: When Clock1 output offset set to —0.25 V
OUTPUTA700;"COS?"
ENTERA70@;B$
PRINTABS

2
COSA-@.250 (CR/LF) output

The CLOCK1 output offset settable range is the same as the data
output offset and varies according to the set CLOCK1 output amplitude.

9-73

SECTIONS DETAILS OF DEVICE MESSAGES

39) OON Outputon/off (Qutput ON / off)
B Function Sets DATA / DATA, CLOCK1/CLOCK1, and 1/ 4 output to 0 V
Header Program Query Response (Character No.)

OON [OONAmM OON? OONAM . FIX D)
B Valueofm @ : Output off

1 : Outputon

B CommandType Sequential Command
B Usage Restrictions The command is invalid under the following setting conditions.

Program: When the FD is being accessed
Query: None

B Usage Example Program: When setting output to off
OUTPUTA700;"OONAG"

Query: When output on
OUTPUTA70@;"00N?"
ENTERA700;B$
PRINTABS

2
OONA 1 (CR/LF) output

9-74

40) DDS

B Function

SECTION9 DETAILS OF DEVICE MESSAGES

Data / Data display switch (Data / data Display Select)
Selects DATA /DATA display setting value

Header Program Query Response (Character No.)
DDS |DDSAm DDS? DDSAmM (FIX 1)
B Valueofm @ : DATA setting value display

B CommandType
B Usage Restrictions

B Usage Example

1 : DATA setting value display

Sequential command

The command is invalid under the following setting conditions.

Program:

Query:

Program:

Query:

At DATA /DATA tracking on
When the display is 1/4 SPEED when Option 03 is installed
When the FD is being accessed

The command is invalid under the following setting
conditions and ERR (CR / LF) is output.

At DATA /DATA tracking on

When the display is 1/4 SPEED when Option 03 is installed

When displaying DATA setting value
OUTPUTA70@;"DDSAB"

When DATA setting value displayed
OUTPUTA70@@;"DDS?"
ENTERAT70%;B$

PRINTABS$

d
DDSA1 (CR/LF) output

9-75

SECTION9 DETAILS OF DEVICE MESSAGES

41) TRK

B Function

DATA /DATA tracking (data / data TRacKing)
Sets DATA / DATA tracking on / off

Header Program Query Response (Character No.)
TRK | TRKAmM TRK? TRKAM (FIX 1)
B Valueofm @ : Tracking off

B Command T Type

B Usage Restrictions

B Usage Example

9-76

1 : Trackingon

Sequential command

The command is invalid under the following setting conditions.

Program:

Query:

Program:

Query:

When the display is 1/4 SPEED when Option 03 is installed
When the FD is being accessed

The command is invalid under the following setting
conditions and ERR (CR/ LF) is output.
When the display is 1/4 SPEED when Option 03 is installed

When setting tracking off
OUTPUTA7@@;"TRKAG"

When tracking on
OUTPUTAT7@@;"TRK?"
ENTERA700;B$
PRINTAB$

i)
TRKA1 (CR/LF) output

42) SPD

B Function

SECTION9 DETAILS OF DEVICE MESSAGES

1/1SPEED / 1/4 SPEED display switch
(1/1SPeeD / 1/4speed display select)

Selects 1/1SPEED/1/4SPEED setting value display

Header Program Query Response (Character No.)
SPD |SPDAmM SPD? SPDAmM (FIX 1)
B Valueofm @ : 1/1SPEED display

B Command Type

B Usage Restrictions

B Usage Example

B Note

1 : 1/4SPEED display

Sequential command

The command is invalid under the following setting conditions.

Program:

Query:

Program:

Query:

When Option 03 is not installed
When the FD is being accessed

The command is invalid under the following setting
conditions and ERR (CR/ LF) is output.
When Option 03 is not installed

When displaying 1/1SPEED
OUTPUTAT700;"SPDAB"

When 1/4SPEED displayed
OUTPUTAT70@;"SPD?"
ENTERA700;B$
PRINTAB$

N
SPDA1 (CR/LF) output

When Option 03 not installed
OUTPUTA 700, "SPD?"
ENTERA700;B$
PRINTABS

!
ERR (CR/LF) output

This command is valid when Option 03 is installed.

9-77

SECTION9 DETAILS OF DEVICE MESSAGES

® Other Sections
The following pages show each control message for the other sections.
‘The A in the strings indicates a space.

B Note Please note that when the setting of the function switch on the back
panel is Remote, the contents set by the command take priority of the
setting of the function switch, but when the setting is Local, the back-
panel function switch setting contents are returned.

9-78

SECTION9 DETAILS OF DEVICE MESSAGES

43) SOP Syncsignal output selection (Sync QutPut)
B Function Controls sync signal output
Header Program Query Response (Character No.)
SOP [SOPAmMm SOP? SOPAmM (FIX 1)
B Valueofm @ : 1/64CLOCK

B Command Type
B Usage Restrictions

B Usage Example

1 : PATTERN SYNC (FIXED)
2 . PATTERN SYNC (VARIABLE)

Sequential command

The command is invalid under the following setting conditions.
Program: When the FD is being accessed

Query: None

Program: When setting sync signal output to 1/64 CLOCK
OUTPUTAT700;"SOPAD"

Query: When sync signal output set to PATTERN SYNC (FIXED)
OUTPUTA700;"SOP?"
ENTERA700;B$
PRINTAB$

\)
SOPA1 (CR/LF) output

9-79

SECTION9 DETAILS OF DEVICE MESSAGES

44) ECH

B Function

Error insertion channel (Error addition CHannel)

Selects error insertion channel

Header Program Query Response (Character No.)
ECH |ECHAmM ECH? ECHAm (FIX 2)
B Valueofm The error insertion channel can be set in the following range of

M CommandType

B Usage Restrictions

B Usage Example

9-80

channels 1 to 32.
(chl) Min. value: 1
(ch32) Max. value: 32

The response is as follows:

(ch1) ECHAA1

(ch32) ECHA32

Sequential command

The command is invalid under the following setting conditions.

Program: When the FD is being accessed

Query: None

Program: When inserting error in ch3

OUTPUTAT7@@;"ECHA3"

Query: When error inserted in ch8

OUTPUTAT7@@;"ECH?"

ENTERA700;B$

PRINTABS

I

ECHA A8 (CR/LF)

45) SFT

B Function

SECTION9 DETAILS OF DEVICE MESSAGES

Mark ratio and bit shift value
(mark ratio and bit ShiFT)

Sets PRBS mark ratio AND bit shift value

Header Program Query Response (Character No.)
SFT |SFTAm SFT? SFTAm (FIX 1)
B Valueofm @ : 1bitshift

B CommandType

B Usage Restrictions

B Usage Example

1 : 3bitshift
Sequential command
The command is invalid under the following setting conditions.

Program: When the FD is being accessed and when the generation
pattern is ALTERNATE, DATA and ZERO SUBST

Query: The command is invalid under the following setting
conditions and ERR is output.
"When the generation patternis ALTERNATE, DATA and
ZERO SUBST ‘

Program: When setting mark ratio AND bit shift value to 1 bit
OUTPUTAT70@;"SFTAB"

Query: When mark ratio AND bit shift set to 1 bit
OUTPUTAT700;"SFT?"
ENTERA70@;B$
PRINTAB$

N
SFTA1(CR/LF) output

When generation pattern set to ALTERNATE, DATA or
ZERO SUBST

OUTPUTAT70@;"SFT?"

ENTERA70@;B$

PRINTABS

)
ERR (CR/LF) output

9-81

SECTION9 DETAILS OF DEVICE MESSAGES

46) EEI

B Function

External error insertion (External Error Injection)

Switches error insertion method between external insertion and

internal insertion

Header Program Query Response (Character No.)
EEI |EEIAm EEI? EEIAmM (FIX 1)
M Valueofm @ : Internal error insertion

B CommandType

B Usa

B Usa

9-82

ge Restrictions

ge Example

1 : External error insertion

Sequential command

The command is invalid under the following setting conditions.

Program: When the FD is being accessed

Query: None

Program: When setting external error insertion to on

OUTPUTAT70@;"EEIAL"

Query: When external error insertion set to off

OUTPUTA70@;"EEI?"

ENTERA700;B%
PRINTABS

EEIA® (CR/LF) output

47) APS

B Function

SECTION9 DETAILS OF DEVICE MESSAGES

Alternate pattern A /B switch signal selection
(Alternate Pattern A /B Select timing)

Selects whether to use internally-generated output or external input
signal for alternate pattern A /B switch signal

Header Program Query Response (Character No.)
APS |APSAmM APS? APSAmMm (FIX 1)
B Valueofm @ : Internal error insertion

B Command Type

B Usage Restrictions

B Usage Example

1 . External error insertion

Sequential command

The command is invalid under the following setting conditions.
Program: When the FD is being accessed

Query: None

Program: When setting use of external input signal

OUTPUTAT70@;"APSAT"

Query: When using internally-generated signal
OUTPUTA70@; "APS?"
ENTERA700;B%

PRINTAB$

N
APSA@ (CR/LF) output

9-83

SECTION9 DETAILS OF DEVICE MESSAGES

48) INI

B Function

Initialize (INItialize)

Forcibly initializes to settings at factory shipment

Header Program Query Response (Character No.)
INI [INI None None
B Command Type Sequential command

B Usage Restrictions

Usage Example

B Note

9-84

When the FD is being accessed

Program: When initializing to settings at factory shipment

OUTPUTAT70@;"INI"

This command executes the same as the operation when the LOCAL

key is kept pressed at power-on.

49) WRT

B Function

SECTION9 DETAILS OF DEVICE MESSAGES

Pattern data input byte number (pattern data WRiTe)

Sets pattern data DMA send byte number and start address

Header Program

Query Response (Character No.)

WRT |WRTAmM1,m2

None None

B Valueofm

B Command Type
B Usage Restrictions

B Usage Example

B Note

ml : Pattern send byte number
Numeric range: Max. value 1048376
Min. value 1
Step 1

m2 : Pattern input header address
Numeric range: Max. value 524288
Min. value 0
Step 1

The above maximum values are halved when the generation pattern
setting is ALTERNATE pattern.

Sequential command
The command is invalid under the following setting conditions.

Program: When the FD is being accessed
When the generation pattern is ZERO SUBST or PRBS
When the pattern send byte number + the pattern header
address X 2is greater than 1048376.

Program: When the generation pattern is DATA and setting data from
page 1 to page 10.
DIMAB(9)
READAB(*)
DATAA1,2,4,8,16,32,64,128,256,512
OUTPUTAT7@@;"WRTA20,8"
OUTPUTA7@@AUSINGA "W, #";B(k)

Data for pages 1 to 10 is set

This equipment defines the byte number required for the DMA sending
pattern data and the input header address, switches the DMA mode,
and defines the storage address to the internal RAM area, from each
value of the NR part.
The relationship between the pattern header address and the actually-
set page is

(pattern header address + 1) = actual page number
In addition, the DMA mode is released after sending of the pattern data
is completed.
For sending the pattern data DMA, refer to Sending Pattern Data DMA
in the appendix.

9-85

SECTION9 DETAILS OF DEVICE MESSAGES

50) RED? Pattern data output byte number
(pattern data REaD ?)
B Function Sets byte number and start address read when sending pattern data
DMA
Header Program Query Response (Character No.)
RED |None RED?Am1,m2 | Data Pattern String (according tom1)
B Valueofm ml : Pattern send byte number

B Command Type
B Usage Restrictions

B Usage Example

B Note

9-86

Numeric range: Max. value 1048376
Min. value 1
Step 1

m2 : Pattern output header address
Numeric range: Max. value 524288
Min. value 0
Step 1

The above maximum values are halved when the generation pattern
setting is ALTERNATE pattern.

Sequential command

The command is invalid under the following setting conditions and ERR
(CR/LF) is output.

Query: When the generation pattern is ZERO SUBST or PRBS
When the pattern send byte number + the pattern header
address X 2is greater than 1048376.

Query: When the generation pattern is DATA and setting data from
page 1 to page 10.
DIMAB(9)
OUTPUTAT700;"RED?A20,0"
ENTERA700AUSINGA"W" ;BS (k)
PRINTABC(k)

Data for pages 1 to 10 is printed

This equipment defines the byte number required for the DMA sending
pattern data and the input header address, switches the DMA mode,
and defines the storage address to the internal RAM area, from each
value of the NR part.

The relationship between the pattern header address and the actually-
set page is

(pattern header address + 1) = actual page number

In addition, the DMA mode is released after sending of the pattern data
is completed.

For sending the pattern data DMA, refer to Sending Pattern Data DMA
in the appendix.

SECTION9 DETAILS OF DEVICE MESSAGES

51) PLL? Phase locked loop condition (PLL unlock?)
M Function Checks whether internal synthesizer PLL locked or unlocked
Header Program Query Response (Character No.)
None |None PLL? PLLAmM (FIX 1)
B Valueofm @ : Locked
1 : Unlocked
B CommandType Sequential command

B Usage Restrictions The command is invalid under the following setting conditions and ERR
(CR/LF)is output.

Query: When Option 01 not installed

B Usage Example Query: When internal synthesizer unlocked
OUTPUTAT70@;"PLL?"
ENTERA700:B$
PRINTABS$

l
PLLA1(CR/LF) output

When Option 01 not installed
OUTPUTAT7@@;"PLL?"
ENTERA700:B$
PRINTABS

!
ERR (CR/LF) output

9-87

SECTION9 DETAILS OF DEVICE MESSAGES

52) RTM

B Function

Setinternal timer (Real TiMe setting)

Sets internal timer

Header

Program

Query Response (Character No.)

RTM |RTMAmM1,m2,m3,m4,mb,m6 |RTM?

RTMAmM1,m2,m3m4,mb5,m6
(FIX 2 each)

B Valueofm

M Command Type

B Usage Restrictions

B Usage Example

9-88

The setting step is 1 for each if m1 to m6

ml :
m2 :
m3 :
m4 .
mb :
mo :

Function Setting Range

Year 0~99 (Gregorian)
Month 1~12

Day 1~31 (Leap Year; 1~29)
Hour 0~23

Minute 0~59

Second 0~59

Sequential command

The command is invalid under the following setting conditions.

Program: When the FD is being accessed

Query: None

When setting time to 8:23:45 28 May 1967
OUTPUTAT700;"RTMAG67,5,28,8,23,45"

The timer starts after the setting is completed.

Query: When internal timer is 11:30:00 23 April 1994

OUTPUTAT70@; "RTM?"
ENTERA700:B$
PRINTABS

i
RTMA94,A4,23,11,30,A@ (CR/LF) output

SECTIONS DETAILS OF DEVICE MESSAGES

53) PWI Power cut, Circuit recovery status (PoWer fail Interval)
B Function Output power cut time, power recovery time and cut interval
Header Program Query Response (Character No.)
None | None PWI? PWFAmM1,m2,m3,m4,m5,m6,

PWRAmM1,m2,m3,m4,mb,m6,
PWIAAAAMT ,md4,mb,m6 (CR/LF)

B Valueofm PWF displays the power cut time in the year, month, day, hour, minute,
and second format.
PWR displays the circuit recovery time in the year, month, day, hour,
minute, and second format.
PWI displays the cut interval in the day, hour, minute and second
format.

Function Setting Range

ml : Year 0~99 (Gregorian)
m2 : Month 1~12 }
m3 : Day 1~31 (Leap Year: 1~29)
m4 : Hour 0~23
mb : Minute 0~59
mb : Second 0~59
m7 : Day 0~99999
B Command T Type Sequential command
B Usage Restrictions The command is invalid under the following setting conditions and ERR
(CR/LF)is output.
Query: After device clear is received and after initialize
M Use Example Query: OUTPUTAT7@0;"PWI?"
ENTERA700;B$
PRINTABS

PWFA95,04,14,00,00,00,
PWRA95,04,15,12,00,00,
PWIAAAAANANNTL,12,08,00 (CR/LF) output

After device clear received or after initialize
OUTPUTAT700;"PWI?"

ENTERA 70 ;B$

PRINTAB$

)
ERR (CR/LF) output

B Note The response to the query in a single character string without a line
feed.

9-89

SECTIONS9 DETAILS OF DEVICE MESSAGES

54) DLY Delay status (DeLaY unlock?)
B Function Check whether servo circuit of clock delay circuit in READY or BUSY
status
Header Program Query Response (Character No.)
None |None DLY? DLYAmMm (FIX 1)

B Valueofm

B Command Type

B Usage Restrictions

B Usage Example

9-90.

@ : READY status
1 : BUSY status

Sequential command

The command is invalid under the following setting conditions and ERR
(CR/LF) is output.

Query: When the display is 1/4SPEED when Option 03 is installed

Query: When servo circuit of clock delay circuit READY
OUTPUTAT700:"DLY?"
ENTERA700;B$
PRINTABS$

)
DLYA® (CR/LF) output

When display 1/4SPEED
OUTPUTA70@;"DLY?"
ENTERA700;BS
PRINTABS$

2
ERR (CR/LF) output

SECTION 10
EXAMPLE OF PROGRAM CREATION

TABLE OF CONTENTS

10.1 Example of Program creation Using HP9000 i ittt .. 10-6

10-1

(Blank)

10-2

SECTION 10 EXAMPLE OF PROGRAM CREATION

This section describes examples of how to create MP1763B GPIB programs.

The sample programs which appear in this section were written for a PC-compatible computer with
GPIB interface card of National Instruments (N.I).

The program were written in Microsoft QUICK BASIC Version 4.50.

The programs were verified by running them on the HP9000-200/ 300 using HP-BASIC V5.12 and
DECpc computer with GPIB interface card of N.I, using Microsoft QUICK-BASIC Version 4.50.

The program examples described here are:

Y]
(2)
(3)
(4)
(5)
(6)
("N
(8)

Frequency setting 1 (point setting)
Frequency setting 2 (Fixed range setting)
Generation pattern setting

Output signal setting

Reading file information from floppy disk
Floppy disk operation

Status byte checking

DMA transfer for pattern data

Table 10-1 shows the preparations for sample program execution.

10-3

SECTION 10 EXAMPLE OF PROGRAM CREATION

Table 10-1 Preparation for Sample Program Execution (1/2)

Controller Preparation for program execution
DEC pc ® Set the GPIB address of MP1763B as “1”.
® Set IBCONF as follows.
® <Board Characteristics >
Board : GPIB @ (Defines board as “GPIB@”)
Primary GPIB Address 0
Secondary GPIB Address NONE
Timeout setting 1000 sec
Terminate Read on EOS Yes
Set EOI with EOS on Writes Yes
Type of Compare on EOS 7-Bit
EOS byte OAH
Send EOI at end of Write Yes
System Controller Yes
Assert REN when SC No
Enable Auto Serial Polling Yes
Enable CIC Protocol No
Bus timing 500 nsec
Cable Length for High Speed off
Parallel Poll Duration Default
Use this GPIB interface Yes
Base I/ 0 Address #2c0nh
Interrupt Level 11
DMA Channel 5
DMA Transfer Mode Demand

10-4

SECTION 10 EXAMPLE OF PROGRAM CREATION

Table 10-1 Preparation for Sample Program Execution (2/2)

Controller

Preparation for program execution

DEC pc

® < Device Characteristics>
Device : PPG (Defines device name as “PPG”)

Primary GPIB Address 1
Secondary GPIB Address NONE
Timeout setting 1000 sec
Serial Poll Timeout 1 sec
Terminate Read on EOS Yes
Set EOI with EOS on Writes Yes
Type of compare on EOS 7-Bit
EOS byte @Ah
Send EOI at end of Write Yes
Enable Repeat Addressing No

® Devices @ is connected to the GPIB@ of device O using the GPIB
Device Map.

® Connects MP1763B and DECpc with GPIB cables.

10-5

SECTION 10 EXAMPLE OF PROGRAM CREATION

10.1 Example of Program creation Using DECpc
< Explanation of common section of the program >

The following sample programs are created using Microsoft Quick Basic Ver 4.50 and the GPIB
interface card of National Instrument. (3 Refer to the instruction manuals of Quick Basic and GPIB driver for details.)

The necessary common functions in the sample program are summarized in the two programs below.

e COMMON.BAS
e ACS_GPIB.BAS

These two programs must be prepared when the sample programs are executed.
Also, only the necessary functions may be prepared.

The two kinds of common functions are described the following pages.

10-6

<COMMON.BAS >
COMMON.BAS consists of four types of functions.

SECTION 10 EXAMPLE OF PROGRAM CREATION

Table 10-2 Table of COMMON.BAS Functions

Module Function Processing
No.
1.1 SUB ClearDisp Erases screen in units of line.
(p%, 1%) p% : Start line number for erase
1% : Number of lines to be erased
1.2 FUNC Exchange% |The upper and lower bytes of data having a bit pattern of a single
(i%) | precision integer are exchanged in byte units.
i% : Bit pattern data
1.3 FUNC itob$ Single precision integer is converted into a binary character
(1%, v%) | string of bit length which is specified by LSB.
However, output character length is fixed at 16 characters.
1% : Binary character string length
v% : Conversion data
1.4 SUB waidly (tim) Waits for the specified period of time.
tim: Specified time (seconds) (input)

Each functions and its flowchart are shown on the following pages.

10-7

SECTION 10 EXAMPLE OF PROGRAM CREATION

(1.1) SUB ClearDisp (p%, 1%): Erases screen.

® Flowchart

Move the cursor to the specified
position.

R
>

Completed

Finished erasing the specified lines?

Erase not completed

Erase 1 line of the screen.

® Program list

' ---- Procedure for Clear display ----
' in p%:Location line number
! 1%:clear line count
1
SUB ClearDisp (p%, 1%)

LOCATE p%, 1

FOR i% = 0 TO (1% - 1)

PRINT "
"

NEXT i$%

END SUB

10-8

SECTION 10 EXAMPLE OF PROGRAM CREATION

(1.2) FUNCTION Exchange (i%): Swaps 16-bitinteger data in units of byte.

o Flowchart

Separate the input integer into upper and lower bytes.
If the value of the lower byte is negative, enter zeros in the
lower byte.

|

Swap the upper and lower bytes and link them.

Isthe linked data
greaterthan 32768?

Add the portion by which the upper value was exceeded to
the lower value.

END

® Program list

---- Exchange 16-bits pattern data ----
In i%:16bits pattern data (used integer)

Procedure for swap of low byte and high byte .

This program is bit manipulation of integer valu. Why this program used
real value because one is overflow detect on bit manipulation of integer
value, another one is internal manipulation by real value although input
parameter is integer. And integer declear value is same operation.

FUNCTION Exchange$% (i%)
h = i% AND &HFF
1 = i% AND &HFFO0O0
IF h < 0 THEN
h =20
END IF

a = INT(h * 256) + ((1 ¥ 256) AND &HFF)
IF a >= 32768 THEN

b =a - 32768
a = -32768 + b
END IF

Exchange$% = a
END FUNCTION

10-9

SECTION10 EXAMPLE OF PROGRAM CREATION

(1.3) itob$ (1%, v%): Convertsintegersinto binary character strings.

® Flowchart

(START)

>

Is the 16-bit conversion complete?

as the specified

conversion character string length

been obtained?

Pad blank characters from the left
side of the output.

Pad the converted characters from
the left side of the output.

® Program list

10-10

SECTION 10 EXAMPLE OF PROGRAM CREATION

(1.4) waidly (tim!): Creates the wait time

® Flowchart

® Program list

START

Obtain TIMER data with delayed start.

Has the time delayed?

Obtain new TIMER data.

Did the
current TIMER data reverted to the
delayed time?

Add reset second-data for one day that
has passed 00:00AM.

J

10-11

SECTION 10 EXAMPLE OF PROGRAM CREATION

<Explanation of ACS__GPIB.BAS>
ACS__PGIB.BAS consists of the following 10 types of functions.

Table 10-3 ACS__GPIB.BAS Functions

Module . .
Function Processing
number
2.1 SUB wrtemdl (w$) | Send commands to PPG.
w$: Command character string to be sent (input)
2.2 FUNC reademdl1$ |Reads messages from PPG.
0 reademd1$: Message character string (returned value)
2.3 SUB dmawrt Transfers in DMA to PPG.
W% (), 1%) w% (): Integer array of pattern data to be transferred
i% : Number of elements of integer array
2.4 SUB EndPoll () Performs polling of the END bit of the MSS status register.
2.5 SUB SRQPoll () Performs polling of the ERROR bit and SRQ bit of the MSS status
register.
2.6 SUB StatusMask (| Sets the mask pattern for the status, event, and expansion
sre%, |registers.
ese%, sre% : Mask pattern for status register
esel%, ese% : Mask pattern for standard event register
ese2%) esel%: Mask pattern for expansion event register 1
ese2%: Mask pattern for expansion event register 2
2.7 SUB StatusDisp (Displays the setting status of the status, event; and expansion
stb%, |registers. The read data is specified as an argument and sent to
esr%, |the calling side.
esrl%, stb% : Pattern of status register setting status
esr2%) esr% : Pattern of standard event register setting status
esrl%: Pattern of expansion event register 1 setting status
esr2% : Pattern of expansion event register 2 setting status
2.8 FUNC gpinit% () Executes GPIB initialization and returns the initialization as
function values.
0 (False) : Error in setting. Initialization failed.
1 (True) : PPG completed initialization.
2.9 SUB trap () Processes system errors.
2.10 SUB gpiberr () Processes internal errors included in the GPIB sample program
provided by National Instruments, displays status information.

10-12

SECTION 10 EXAMPLE OF PROGRAMCREATION

Flowcharts of each function and program lists are described in the following pages.

The following must be entered at the header of the module:

REM $INCLUDE:'C:¥at-gbib¥gbasic¥qgbdecl.bas’ @
COMMON SHARED DEV%,GPIB@%,PPG%)

Item @ loads the NI-488 function definition using the GPIB driver of National Instruments.
In actual use, specify a directory including ‘qbdecl.bas’.

Item @ is a Quick Basic statement which defines the common variables between multiple modules.

H Note : Foritem D, note that the GPIB varies with the environment used.

10-13

SECTION 10 EXAMPLE OF PROGRAM CREATION

(2.1) SUB wrtcmd1 (w$): Sends commands to PPG.

® Flowchart

Is PPG initialized? Initialization failed

Initialization succeed

Output command to PPG. ibwrt (PPG%, wrt$)

Normal end

ibsta% ended normally?

Process error using trap.

END

® Program list

10-14

SECTION 10 EXAMPLE OF PROGRAM CREATION

(2.2) FUNCTION readcmd1$():
Obtains data in response to the command sent from PPG separately.

START

® Flowchart

. Failed
Is PPG initialized?

Succeeded

Save the input buffer.

Obtain the data from PPG. ibrt (PPG%, rd$)

. Normal
Is ibsta% ended normally?

Failed

Process error using trap ().

A

Return the input data.

® Program list
L]

---- Procedure for data read from PPG ----
1

FUNCTION readcmdl$
"IF DEV$ = 1 OR DEV% = 3 THEN
r$ = SPACES$(256)

CALL IBRD(PPG%, r$) ' Read data from PPG%
IF IBSTA% < 0 THEN CALL trap

readcmdl$ = r$

END IF
END FUNCTION

10-15

SECTION 10 EXAMPLE OF PROGRAM CREATION

(2.3) SUB dmawrt(w%, i%): Transfers the PPG data in DMA transfer.

® Flowchart
START

Fail
Is PPG initialized? ailed

Succeeded

Turn on the DMA transfer of the GPIB .
ibdma (PPG%, 1)
card.
Transfer data to PPG. ibwrti (PPG%, w%(), i%)

Normal end
Ended normally?

Failed

Process error using trap ().

Turn off the DMA transfer of the GPIB

ibdma (ED%, 0)
card.

END

® Program list

' -——- Procedure for DMA transfer ----

' in w%():Transmit data pattern of integer arry

! i% :length count for integer arry
]

SUB dmawrt (w%(), i%) :
IF DEV% = 1 OR DEV% = 3 THEN
CALL IBDMA(PPGS%, 1) ' DMA enable

is = i% * 2 + 1 ' make up to a byte count
CALL IBWRTI(PPG%, w%(), i%)

IF IBSTA% < 0 THEN CALL trap ' call trap if illegal end

CALL IBDMA(PPG%, 0) ' DMA disable
END IF
END SUB

10-16

(2.4) SUB EndPoll(): Waits until the status end bit s set.

® Flowchart

SECTION 10 EXAMPLE OF PROGRAM CREATION

START

Failed

Is PPG initialized?

Succeeded

Clear the status register.

L
-

Read out and display the status register.

Take a 1-second delay time.

End bit of the

NO

® Program list

' —--- Procedure for judgement of Measurement end ----

SUB EndPoll
IF DEV$ = 1 OR

status register raised?

End bit raised

wrtcmd1 (“STB?")

StatusDisp(, , ,)

waidly (1)

A

END

DEV$ = 3 THEN

CALL wrtcmdl("*STB?") !

RD$ =

DO

LEFT$ (readcmdl$, IBCNT$ - 1)

CALL StatusDisp(reg%, dmy%, dmy2%, dmy3%)

waidly (1)

LOOP UNTIL reg$ AND &H4

END IF
END SUB

reset event flag

10-17

SECTION 10 EXAMPLE OF PROGRAM CREATION

(2.5) FUNCTION SRQPoll(): Judges SRQ and error bits.

® Flowchart

Failed
Is PPG initialized? a

Succeeded
Take a 100msec delay time. waidly (0.1)
Read the status register. ibrsp (PPG%, rsp%)

Error occurred

ibsta% ended normally? trap ()

Normal Process errors.

Error occurred

FD error occurred?

Display the error
message.

I

Display the status. itob$ (8, spr%)

Normal

NO

SRQ bit: ON?

YES

Return the execution end status.

END

10-18

SECTION 10 EXAMPLE OF PROGRAM CREATION

® Program list

---- Procedure for Seliall poll with SRQ bit ----

FUNCTION SRQPoll$
IF DEV$ = 1 OR DEV$% = 3 THEN
exeg =1
DO
waidly (.1)

CALL IBRSP(PPG%, SPR%)
IF IBSTA < 0 THEN CALL trap
srq = SPR%Y AND &H40

esrl = SPR% AND &H4
esr2 = SPR% AND &HS8
IF esr2 = &H8 THEN 'Output warning message,if
error detect
LOCATE 12, 35
PRINT "FD error detect!!"
exe% = 0
EXIT DO
END IF

sta$ = itob$(8, SPR%)
LOCATE 1, 60
PRINT "#STB:"; sta$
LOOP UNTIL srq = &H40 AND esrl = &H4

END IF

)

SRQPoll% = exe$

END FUNCTION

10-19

SECTION 10 EXAMPLE OF PROGRAM CREATION

(2.6) SUB StatusMask (sre%, ese%, ese1%, ese2%): Sets statusregisters.

® Flowchart

Reset the status register. wrtemd1 (“CLS")

Set the mask pattern of the status register. | wrtemd1 (“*SRE” + sre%)

Setthe mask pattern of the standard event
status byte.

l

Set the mask pattern of the expansion event
status byte 1.

Set the mask pattern of the expansion event
status byte 2.

wrtcmd1 (“*ESE” + ese%)

wrtecmd1 (“"ESE1” + ese1%)

wrtcmd1 (“ESE2” + ese2%)

® Program list

! ---- Procedure for set status mask pattern ----

' in sO%:status byte enable register mask pattern

' sl%:normal event status enable register mask pattern

! s2%:Extend event status enable register-1 mask pattern
! s3%:Extend event status enable register-2 mask pattern

SUB StatusMask (s0%, sl%, s2%, s3%)
wrtemdl ("*CLS")
wrtcmdl ("*SRE "
wrtcmdl ("*ESE "
wrtcmdl ("ESE1 "
wrtcmdl ("ESE2 "

STRS (s0%))
STRS$(s1%))
STRS$(s2%))
STRS$(s3%))

+ + + +

END SUB

10-20

SECTION 10 EXAMPLE OF PROGRAM CREATION

(2.7) SUB StatusDisp (stb%, esr%, esr1%, esr2%):
Reads out and displays the status register.

® Flowchart

START

Read the status register.

wrtcmd1 (“*STB?")
reademd1$ ()

Setthe status data as an argument.

stb%

Display the status data.

itob$ (8, stb%)

|

Read the standard event status byte.

wrtcmd1 (“*#ESR?")
reademd1$ ()

Set the status data as an argument.

esr%

Display the status data.

itob$ (8, esr%)

Read out the expansion event status byte 1.

wrtemd1 (“ESR1?7)
reademd1$ ()

|

Setthe status data asan argument.

esr1%

Display the status data.

itob$ (16, esr1%)

|

Read out the expansion event status byte 2.

wrtemd1 (“ESR2")
reademd1$ ()

Setthe status data as an argument.

esr2%

Display the status data.

itob$ (16, esr2%)

END

10-21

SECTION 10 EXAMPLE OF PROGRAM CREATION

® Program list

' ---- Procedure for status byte display ----
' out stb% :Status byte

' esr% :Normal event status byte

! esrl%$:Extend event-1 status byte

! esr2%:Extend event-2 status byte

SUB StatusDisp (stb%, esr%, esrl$, esr2%)
CALL wrtcmdl("*STB?")
RD$ = LEFT$(readcmdl$, IBCNT$ - 1)
stb% VAL (RDS)
sta$ = itob$(8, VAL(RDS))
LOCATE 1, 60
PRINT "*STB:"; sta$

CALL wrtcmdl("*ESR?")

RD$ = LEFTS$(readcmdl$, IBCNT% - 1)
esr$ VAL(RDS)

sta$ itob$(8, VAL(RDS))

LOCATE 2, 60
PRINT "*ESR:"; sta$

CALL wrtcmdl("ESR1?")

RD$ = LEFTS$(readcmdl$, IBCNT% - 1)
esrly = VAL(MIDS$(RDS, 6, 5))

sta$ = itob$(16, VAL(MIDS$(RDS, 6, 5)))
LOCATE 3, 60

PRINT "ESR1l:"; sta$

CALL wrtcmdl("ESR27?")
RD$ = LEFTS$(readcmdl$, IBCNT% - 1)
esr2% = VAL(MID$(RDS$, 6, 5))
sta$ = itob$(16, VAL(MIDS$(RDS$, 6, 5)))
LOCATE 4, 60
PRINT "ESR2:"; sta$

END SUB

10-22

SECTION 10 EXAMPLE OF PROGRAM CREATION

(2.8) 'FUNCTION gpinit(): Initializes fhe GPIB control environment.

e Flowchart

Erase screen.

Initialize the GPIB control board. ibfind (“GBIB0", gpib0%)

NO

Initialization succeeded?

ibfind ("PPG", PPG%)

Initialize the control unit Display error message.
(MP1763A: PPG).

NO

PPG% Initialization succeeded?

Set the initialization OK flag: DEV% Display the error message.

Send the interface clear message. ibsic (GPIB0%)

NO

ibsta% ended normally?

Take a 500 msec delay time. Process trap ().

10-23

SECTION 10 EXAMPLE OF PROGRAM CREATION

Branches every time
initialization succeeds?

1 2 3 I Other

Send device clear to Send device clear to Send device clear to Take a 3-second

PPG. ED. PPGand ED. delay time.

Process the error.

Take a 1-second delay time. waidly (1)

l

Return the result of initialization.

END

10-24

SECTION 10 EXAMPLE OF PROGRAM CREATION

® Program list

' -—-- Procedure for initialize equipments and interface board ----
]

FUNCTION gpinit$
CLS
CALL IBFIND("GPIBO", GPIBO0%) 'Open DEVice (GPIBO)
IF GPIB0% < 0 THEN
PRINT "Configration fail!!"
PRINT "You need verify are hardware condition, and try

again."
ret$ = 0
ELSE
CALL IBFIND("PPG", PPG%) 'Open DEVice (PPG)
IF PPG% < 0 THEN
PRINT "Lost PPG address!!"
PRINT "If you use a PPG, then verify configration
and environment."
DEVS = 0
ELSE
DEVY = 1
END IF
1
CALL IBSIC(GPIBO0%) 'Interface clear
IF IBSTA% < 0 THEN CALL trap
1]
CALL waidly(.5) '500ms wait
)
SELECT CASE DEV$%
CASE 1
CALL IBCLR(PPG%) 'DEVice clear (PPG)
CASE 2
CALL IBCLR(ED%) 'DEVice clear (ED)
CASE 3
CALL IBCLR(PPGS%) 'DEVice clear (PPG)
CALL IBCLR(ED%) 'DEVice clear (ED)
CASE ELSE
waidly (3)
CALL trap
END SELECT
retg =1
END IF
waidly (1)
CLS
gpinit% = ret$ ' set Execution status

END FUNCTION

10-25

SECTION 10 EXAMPLE OF PROGRAM CREATION

(2.9) SUB trap (msg$): Processes errors.

e Flowchart

® Program list

10-26

START

Display the GPIB status.

Stop the program.

gpiberr ()

(2.10) SUB gpiberr (msg$): Displays the STATIC: GPIB status.

® Flowchart

SECTION 10 EXAMPLE OF PROGRAM CREATION

START

Display the specified message.

Display the ibsta% status.

|

Display the iberr% status.

Display the ibcnt% status.

Turn the GPIB board offline.

END

10-27

SECTION 10 EXAMPLE OF PROGRAM CREATION

® Program list

10-28

SECTION 10 EXAMPLE OF PROGRAM CREATION

<Program start>

The procedures used to process the above common functions and to start the sample programs (1) to (8)
are described below.

(Procedure 1) : Open File from the menu bar and select “Load File. . . . ”.
Next, load the common function file name COMMON.BAS.

(Procedure 2) : Load ACS__GPIB.BAS in the same way as in procedure 1.
(Procedure 3) : Load the sample program in the same way as in procedure 1.

(Procedure 4) : Open Run from the menu bar, and select “Set Main Module”, then make the sample
program loaded in procedure 3 the main module.

(Procedure 5) : Open Run from the menu bar and execute “Start”.

(3 Refer to the Quick Basic Instruction Manual for details.)

10-29

SECTION 10 EXAMPLE OF PROGRAM CREATION

(1) Frequency Setting 1 (Point Setting)

This program sets the frequency and frequency resolution of the internal synthesizer.

10-30

START

Initialize GPIB interface.

> |
1

Input frequency resolution (kHz, MHz).

Input frequency.

|

Set frequency resolution.
Set frequency.

nput whether or
Repeat. P

not to repeat above
processes.

gpinit%()

res$

frq$

wrtemd1(”RES” + res$)
wrtemd1(“FRQ" + frg$)

SECTION 10

® Program list

REM $INCLUDE: 'c:¥at-gpib¥gbasic¥gbdecl.bas'
COMMON SHARED DEVS%, GPIBO0%, PPG%

DECLARE SUB waidly (tim!)
DECLARE SUB wrtcmdl (w$)
DECLARE FUNCTION gpinit$ ()

Tk % ok %k %k % % % %k %k k Kk %k %k %k %k k k %k Kk %k %k %k %k %k Kk % k %k %k %k %k Kk %k %k % %k %k k %k %k % % %k %k %k %k %k %k %k %k % % %k %k

! * MP1761B / MP1763B FREQUENCY SAMPLE SOFT_1 *
Tk ko kkkhhkkdkhkkkhkkkhkkkkkkkkkkkkkkkkkkkkkkkkk sk ke kk %

CLS
IF gpinit$% <> 0 THEN 'setup interface
1

DO
CLS
LOCATE 3, 1
GOSUB setfrql
GOSUB dset

PRINT ""
INPUT " SET NEXT DATA [Y or N] ?", loop$
]

LOOP UNTIL loop$ = "n" OR loop$ = "N"

END IF
STOP

setfrql: '------------—--mmmmm o INPUT DATA CONDITIONS
1]

PRINT ""

EXAMPLE OF PROGRAM CREATION

PRINT " ***xx** MP1761B / MP1763B FREQUENCY_1 SAMPLE PROGRAM *X**xxx!

PRINT ""

INPUT " FREQUENCY RESOLUTION [KHz = 0, MHz = 1]?", res$

PRINT ""
IF res$ = "Q0" THEN

INPUT " FREQUENCY DATA [KHz : 50000 to 12500000] ?", frg$

ELSE
INPUT " FREQUENCY DATA [MHz : 50 to 12500] 2", frqg$
END IF
RETURN
1)
]
dset: B etk ettt bt OUTPUT DATA CONDITIONS
]
CALL wrtcmdl("RES " + res$) ' Set Resolution mode
CALL wrtcmdl("FRQ " + frg$) ' Set Frequency
RETURN
1
END

10-31

SECTION10 EXAMPLE OF PROGRAM CREATION

(2) Frequency Setting 2 (Fixed Range Setting)

This program sets the frequency between two specified points in the specified interval.

10-32

START

Initialize GPIB interface.

|

Set frequency resolution in MHz.

>

1

Input set starting frequency.

Input set stop frequency.

Input set frequency interval.

|

Set frequency start point.

gpinit%()

wrtemd1(”RES1”)

start$

stop$

step$

-

End point frequency?

Add frequency step to current frequency.

wrtecmd1("FRQ" + k%)

nput whether or
Repeat. P

not to repeat above
procedures.

SECTION 10 EXAMPLE OF PROGRAM CREATION

® Program list

REM $INCLUDE: 'c:¥at-gpib¥gbasic¥gbdecl.bas'
COMMON SHARED DEVS%, GPIB0%, PPG%

DECLARE SUB waidly (tim!)
DECLARE SUB wrtcmdl (w$)
DECLARE FUNCTION gpinit$ ()

'***

'k MP1761B / MP1763B FREQUENCY SAMPLE SOFT *
Thkkkkkhhhkkkhhkkkhhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk ok k ok &

CLS
IF gpinit% <> 0 THEN 'setup interface
1)

CALL wrtcmdl("RES 1")

DO
CLS
LOCATE 3, 1
GOSUB setfrqg2
GOSUB dset
'
PRINT ""
INPUT " SET NEXT DATA [Y or N | 2", loop$
¥
LOOP UNTIL loop$ = "N" OR loop$ = "n"
END IF
STOP
)
b e e e e e e e e e = e o — — —— - - - =~ —— = ————— —— — — o — — o —— — —————
: SUB ROUTINE
b e e e e e e e = e e = o —— —— — ——— — —_—— o~ = — o ———— ————— o ———— — ———
1
setfrg2: '------mmmmmm e INPUT DATA CONDITIONS
)
PRINT ""

PRINT " **xx%* MP1761B / MP1763B FREQUENCY 2 SAMPLE PROGRAM *X**xx"
PRINT ""

1

INPUT " START FREQUENCY [50 to 12500 : MHz]? ", startf$

PRINT "

INPUT " STOP FREQUENCY [50 to 12500 : MHz]? ", stopf$

PRINT ""

INPUT " FREQUENCY STEP [MHz]? ", stepf$

RETURN

dset: R R EEE L PR R R e OUTPUT DATA CONDITIONS
1

FOR I = VAL(startf$) TO VAL(stopf$) STEP VAL(stepf$)
CALL wrtcmdl("FRQ " + STRS$S(I)) ' Set Frequency
CALL waidly(.1)

NEXT I

RETURN

END

10-33

SECTION 10 EXAMPLE OF PROGRAM CREATION

(3) Generation Pattern Setting

This program performs the settings related to the generation pattern. First, the pattern logic and
generation pattern are selected and then each setting is performed for the selected pattern.

START

Initialize GPIB interface.

gpinit%()

R
>
>

® Input pattern logic (positive or negative).
e Set pattern logic.

Reset pattern logic?

»| No
|

® [nput generation pattern mode.
® Set input generation pattern.

Reset generation pattern mode?

ALTERNATE

DATA

No ZERO SUBST

PRBS

—

—

—

—

¢ Input data length.
®Set data length.

¢ Input data length.
e Set data length.

@ Input pattern.
®nput zero substitution

® input pattern.
e Set pattern.

bit number.
o Set pattern.

® |nput mark ratio.
o Set mark ratio.

® Set zero substitution bit
number.

Reset data length? Reset data length?

eset patternor
ero substitution bit
number?

Yes eset pattern or

mark ratio?

e input display pattern.
o Switch display pattern.
® Input bit pattern.

® Input bit pattern.
® Set bit pattern.

No No
o Set bit pattern.
Reset display or
bit pattern?
Reset display or
bit pattern? No
w 1 \
0@ () ® ® ®

10-34

SECTION 10 EXAMPLE OF PROGRAM CREATION

017 ©) @ ® ®

A l

e Input number of loops
forboth Aand B
patterns.

e Set number of loops for
both A and B patterns.

Reset number
of loop times?

No No No

YES

Input whether or not to
repeat above procedures.

10-35

SECTION 10 EXAMPLE OF PROGRAM CREATION

® Program list

DECLARE SUB ClearDisp (p%, 1%)
REM $INCLUDE: 'c:¥at-gpib¥gbasic¥gbdecl.bas'

COMMON SHARED DEV$%, GPIBO0%, PPG$%
DECLARE SUB waidly (tim!)

DECLARE SUB wrtcmdl (w$)
DECLARE FUNCTION gpinit$% ()

¥k Kk ok %k ok %k Kk k ok Kk %k ok Kk ok Kk k Kk %k 3k 3k Kk ok 3k %k ok %k Kk sk ok sk ok Kk ok ke ok ok ok 3k ok ok ko ok k ok ok ok Kk %k ok ok k

V% *
' MP1761B / MP1763B PATTERN SET SAMPLE SOFT *
LK 3 *

'***

IF gpinit% <> 0 THEN 'setup interface
1]

DO
GOSUB pattern
'

PRINT ""
INPUT " SET NEXT DATA [YES = ENTER, NO = 1] ?", loop$
]
LOOP UNTIL loop$ = "1"
END IF
STOP
]

pattern: '-------mmmmmmm e INPUT DATA CONDITIONS
'

L =4
CLS
PRINT ""
PRINT " **x*x* MP1761B / MP1763B PATTERN SET SAMPLE PROGRAM **x%xx!
1
DO
LOCATE L, 1
INPUT " LOGIC MODE [POSITIVE = 0, NEGATIVE = 1]?", lgc$
wrtemdl ("LGC " + 1lgc$)
INPUT " Do you wish to change LOGIC (Y OR N) ?", yes$
LOOP UNTIL yes$ = "N" OR yes$ = "n"

CALL ClearDisp(5, 1)
L=L+ 2

DO
DO
LOCATE L, 1
INPUT " PATTERN MODE [ALTN=0, DATA=1, Z.S.=2, PRBS=3] ?", pat$
LOOP UNTIL pat$ = "O" OR pat$ = "1" OR pat$ = "2" OR pat$ = "3"
wrtemdl ("PTS " + pat$)
]

INPUT " Do you wish to change PATTERN (Y OR N) ?", yes$
LOOP UNTIL yes$ = "N" OR yes$ = "n"

10-36

SECTION 10 EXAMPLE OF PROGRAM CREATION

CALL ClearDisp(7, 1)

L=L+ 2
IF pat$ = "3" OR pat$ = "2" THEN ! PRBS OR Z.S. PATTERN
DO
LOCATE L, 1
IF pat$ = "3" THEN
PRINT " PRBS MODE [PN7 =2, PN9 =3, PN1l=5, PN15=6,"
INPUT " PN20=7, PN23=8, PN31=9 12", ptn$
wrtemdl ("PTN " + ptn$)
'
PRINT " MARK RATIO (POSITIVE) [0/8=0,1/8=1,1/4=2,1/2=3]"
INPUT " (NEGATIVE) [8/8=0,7/8=1,3/4=2,1/2=3]?",
mrk$
wrtemdl ("MRK " + mrk$)
'
INPUT " Do you wish to change PRBS MODE & MARK RATIO (Y OR
N) 2", y$
END IF
IF pat$ = "2" THEN
INPUT " Z.S. MODE [2"7=2, 279=3, 2711=5, 2°15=6]?", ptn$
INPUT " ZERO SUBSTITUTION LENGTH [1 to 32767] ?", zln$
wrtemdl ("PTN " + ptn$)
wrtemdl ("ZLN " + z1n$)
'
INPUT " Do you wish to change %.S MODE & Z.S. LENGTH (Y OR
N) 2", y§
END IF
LOOP UNTIL y$ = "N" OR y$ = "n"
ELSE ! DATA OR ALTN PATTERN
IF pat$ = "O0" THEN GOSUB setaltn
IF pat$ = "1" THEN GOSUB setdata
END IF
RETURN
' .
setaltn: '---------------—mo—o-—ooooo SET ALTERNATE A/B PATTERN ---------
'zzz=z======= SET DATA LENGTH ==========z=z=zc=z=z=z==z=z=z=z=======
DO
DO

LOCATE L, 1

INPUT " DATA LENGTH [128 to 4194304] ?", dln
LOOP UNTIL dln >= 128 AND dln <= 4194304
wrtemdl ("DLN " + STR$(dln))
1

INPUT " Do you wish to change DATA LENGTH (Y OR N) ?", yes$
LOOP UNTIL yes$ = "n" OR yes$ = "N"

CALL ClearDisp(9, 1)
L=L+1

LOCATE L + 2, 1

FOR cl = 1 TO 6: PRINT SPACES$(78): NEXT cl

LOCATE L + 1, 1

INPUT " CHOSE ALTERNATE [A =0, B =11 2", alt$
wrtcemdl ("ALT " + alt$)

GOSUB setbit

]

INPUT " Do you wish to change A/B pattern & bit pattern (y or n) ?", yes$
LOOP UNTIL yes$ = "n" OR yes$ = "N"
L=L+2

10-37

SECTION 10 EXAMPLE OF PROGRAM CREATION

DO
LOCATE L + 1, 1: FOR cl =1 TO 2
PRINT SPACES(78)
NEXT cl
1
LOCATE L, 1
INPUT " A PATTERN LOOP TIME [1 to
wrtcmdl ("ALT 0")
wrtemdl ("LPT " + 1pt$)
INPUT " B PATTERN LOOP TIME [1 to
wrtemdl ("ALT 1" + ";LPT " + 1lpt$)
1
INPUT " Do you wish to change LOOP
LOOP UNTIL yes$ = "n" OR yes$ = "N"
L=1L+3
1
RETURN
1
setdata: ‘'--------mmmmmmmm oo
DO

DO
LOCATE L, 1

INPUT " DATA LENGTH [2 to 8388608] ?", dln

127] ?", 1lpt$

127] 2", lpt$

TIME (Y OR N) ?", yes$

LOOP UNTIL dln >= 2 AND dln <= 8388608

wrtemdl ("DLN " + STR$(dln))

INPUT " Do you wish to change DATA LENGTH (Y OR N) ?", yes$

LOOP UNTIL yes$ = "n" OR yes$ = "N"
LOCATE L + 1, 1: PRINT SPACES$(78)
L =1L+ 2

LOCATE L + 1, 1: PRINT SPACES$(78)
LOCATE L + 1, 1
GOSUB setbit

INPUT " Do you wish to change BIT PATTERN (Y OR N) ?",

LOCATE L + 2, 1: FOR cl =1 TO 5
PRINT SPACES$(78)
NEXT cl

LOOP UNTIL yes$ = "N" OR yes$ = "n"

RETURN

10-38

yes$

setbit:
INPUT "
1]

j =8
PRINT "
PRINT "

SECTION 10 EXAMPLE OF PROGRAM CREATION

You are able to choice data format of Hexadecimal or Decimal."
Default data format is Hexadecimal."

BIT$ = nn

FOR k =

0TO j -1

LOCATE L + 4, 1

PRINT " Do you set bit-pattern of" + STR$(page + k) + " PAGE ? ";
INPUT "(y or n)", yes$

IF yes$ = "n" OR yse$ = "N" THEN

EXIT FOR

END IF

IF k <> 0 THEN BIT$ = BITS$ + ","

INPUT " Which do you choice format? (Hexadecimal / Decimal)", ftype$
LOCATE L + 2, 1:
FOR cl =1 TO 4

PRINT SPACE$(78)

NEXT cl

LOCATE L + 2, 1

PRINT SPACES(78)

IF ftype$ = "d" OR ftype$ = "D" THEN

PRINT " Enter " + STR$(page + k) + " PAGE pattern [0 to 65535]";

INPUT b$
ELSE
PRINT " Enter " + STR$(page + k) + " PAGE pattern [0 to FFFF]";
INPUT b$
bs = "#H" + b$
END IF
BITS = BITS + b$
]
NEXT k
PRINT ""
1]
LOCATE L + 1, 1
FOR cl = 1 TO 5: PRINT SPACE$(78): NEXT cl
LOCATE L + 2, 1
PRINT " PAG " + STR$(page) + ";BIT " + BITS

wrtemdl ("PAG

RETURN

END

' + STR$(page) + ";BIT " + BITS)

10-39

SECTION 10 EXAMPLE OF PROGRAM CREATION

(4) Outputsignal setting

This program sets the CLOCK signal delay, and the DATA / DATA /CLOCK signal amplitude and
offset.

START

Initialize GPIB interface. gpinit%()
e Set display to 1/1SPEED. wrtemd1(”"SPD 0")
o Set offset reference value to VOH. wrtemd1("OFS0")
®Set DATA/DATA tracking to OFF. wrtemd1("TRK 0”)

P
Cag

/

Select the setting items from DATA amplitude, DATA offset,)
DATA amplitude, DATA offset, CLOCK amplitude, CLOCK offset and CLOCK

delay.
Input Input Input Input Input Input Input
DATA DATA DATA DATA CLOCK CLOCK CLOCK
amplitude. offset. amplitude. offset. amplitude. offset. delay.
Set Set Set Set Set Set Set
DATA DATA DATA DATA CLOCK CLOCK CLOCK
amplitude. offset. amplitude. offset. amplitude. offset. delay.

l |] |

Mhether
Repeat.

or not to repeat above
procedures.

Stop.

END

10-40

SECTION 10

® Program list
REM $INCLUDE: 'c:¥at-gpib¥gbasic¥gbdecl.bas'

COMMON SHARED DEV%, GPIB0%, PPGS%
DECLARE SUB waidly (tim!)

DECLARE SUB wrtcmdl (w$)
DECLARE FUNCTION gpinit% ()

ok ke de Kk %k k Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk Kk ok k K k kK k k k Kk %k %k Kk dk %k Kk Kk Kk Kk k ¥k Kk k k k k k k k %

1% . : *
'k MP1761B / MP1763B OUTPUT SAMPLE SOFT *
TR e 1/1 SPEED, VOH, TRACKING OFF ------ *
X *

ok d ke %k %k ok %k %k %k % %k %k %k %k Kk Kk Kk k Kk Kk Kk % Kk k %k k Kk Kk Kk %k k Kk Kk k %k %k %k %k %k %k %k % %k %k %k % Kk k %k k k k k %

CLS
IF gpinit% <> 0 THEN 'setup interface
]
CALL wrtcmdl("SPD 0") ' 1/1 SPEED
CALL wrtcmdl("OFS 0") ' OFFSET VOH
CALL wrtcmdl("TRK 0") ' DATA / NDATA TRACKING OFF
1
DO
CLS
LOCATE 3, 1
‘GOSUB setout
GOSUB dset
1
PRINT ""

INPUT " SET NEXT DATA [Y or N] ?", loop$
'
LOOP UNTIL loop$ = "N" OR loop$ = "n"
END IF
STOP

EXAMPLE OF PROGRAM CREATION

10-41

SECTION 10 EXAMPLE OF PROGRAM CREATION

PRINT ""
PRINT " **%*x* MP1761B / MP1763B OUTPUT SIGNAL SET SAMPLE PROGRAM ***Xxkx!
PRINT ""

PRINT " SETTING ITEM [DATA AMPLITUDE = 1, DATA OFFSET = 2"
PRINT " NDATA AMPLITUDE = 3, NDATA OFFSET = 4"
PRINT " CLOCK AMPLITUDE = 5, CLOCK OFFSET = 6"
INPUT " CLOCK DELAY = 7] ? ", ITM

PRINT ""

1

RETURN

1

1

dset: R e E L e L LT SET OUTPUT CONDITIONS
1

IF ITM = 1 OR ITM = 2 THEN CALL wrtcmdl("DDS 0")

IF ITM = 3 OR ITM 4 THEN CALL wrtcmdl("DDS 1")

1]

IF ITM = 1 THEN
INPUT " INPUT DATA AMPLITUDE [2.000 to 0.25] ", DAPS
CALL wrtcmdl("DAP " + DAPS)

END IF

IF ITM = 2 THEN
INPUT " INPUT DATA OFFSET [2.000 to -2.000] ", DOS$
CALL wrtcmdl("DOS " + DOSS)

END IF

IF ITM = 3 THEN
INPUT " INPUT NDATA AMPLITUDE [2.000 to 0.25] ", NAPS
CALL wrtcmdl("NAP " + NAPS)

END IF

IF ITM = 4 THEN
INPUT " INPUT NDATA OFFSET [2.000 to -2.000] ", NOSS
CALL wrtcmdl("NOS " + NOSS)

END IF

IF ITM = 5 THEN
INPUT " INPUT CLOCK AMPLITUDE [2.000 to 0.25] ", CAPS
CALL wrtcmdl("CAP " + CAPS)

END IF

IF ITM = 6 THEN
INPUT " INPUT CLOCK OFFSET [2.000 to -2.000] ", COS$
CALL wrtcmdl("COS " + COS$)

END IF

IF ITM = 7 THEN
INPUT " INPUT CLOCK DELAY [500 to -500] ", CDLS
CALL wrtcmdl("CDL " + CDLS)

END IF

RETURN
1

END

10-42

SECTION 10 EXAMPLE OF PROGRAM CREATION

(5) Reading of floppy disk file information '
This program reads file directory information stored on a floppy disk and displays it on the CRT.

START

Initialize the GPIB interface.

gpinit% ()

® Set so that sending is performed when the SR expansion
event register setting is completed.

StatusMask (, , ,)

® Set the memory switching function as PATTERN mode.

Set the memory
switching function as
OTHERS mode.

o Set the file No/directory switch to the directory mode.

. Error Bit
Terminated normally?

Perform serial polling for the MP1764A. SRQPoll ()

:ON

SRQ : ON | Error Bit: OFF

Read the expansion event status register 1 using
the request command (ESR1?).

-
<

StatusDisp (, , ,)

Display FD Error.

Isthe
FILE ACCESS bit of expansion
event status register 1

YES (1)

® Read the first half of the file information using the request
command (FSH? 0) and save it.

® Read the other half of the file information using the request
command (FSH? 1) and save it.

® Display the information on the CRT.

NO Note)

Is the OTHERS file displayed?

*1

If a system error occurs, the
error contents are displayed
and the program stops.

If an FD error occurs, a
message is issued.

10-43

SECTION 10 EXAMPLE OF PROGRAM CREATION

® Program list

REM $INCLUDE:

'c:¥at-gpib¥gbasic¥gbdecl.bas'

COMMON SHARED DEV%, GPIB0%, PPG%

DECLARE SUB wrtcmdl (w$)

DECLARE SUB ErrPoll ()

DECLARE SUB StatusDisp (stb%, esr$%, esr2%, esr3%)
DECLARE SUB StatusMask (s0%, sl%, s2%, s3%)
DECLARE FUNCTION itob$ (1%, V%)

DECLARE FUNCTION SRQPoll$% ()

DECLARE FUNCTION gpinit$ ()

DECLARE FUNCTION readcmdl$ ()

IF gpinit% <> 0 THEN 'Setup interface

= Set MSS status byte register =======

CALL StatusMask(&H4, &HO, &H2, &H2)

FOR i

10-44

= 0TO 1
'z======== Set memory mode Pattern/Others =========
wrtemdl ("MEM " + STRS$(1i))

'========== Set FILE DIR mode =====z=======
wrtcemdl ("FIL 1")

IF SRQPoll% <> 0 THEN
CALL StatusDisp(dmy%, dmyl%, reg%, dmy3%)

ELSE
LOCATE 12, 35
PRINT "FD error detect!!"
EXIT DO

END IF

LOOP UNTIL reg% AND &H2

SECTION 10 EXAMPLE OF PROGRAM CREATION

=========== Read FD infomation ============
wrtcemdl ("FDE?")

rdl$ = LEFTS$(readcmdl$, IBCNT% - 1)

IF rdl$ <> "FDE 10" THEN

LOCATE 1, 1
SELECT CASE VAL(MIDS$(rdl$, 5, 2))
CASE 0
PRINT "<<EO:Media error >>0
CASE 1
PRINT "<<El:Write protection error>>"
CASE 2
PRINT "<<E2:File full >>"
CASE 3
PRINT "<<E3:File not found >>"
CASE 4
PRINT "<<E4:File already exists
error>>"
CASE 5
PRINT "<<E5:Write error >>"
CASE 6
PRINT "<<E6:Read error >>"
CASE 7
PRINT "<<E7:File type,File error >>"
CASE 8
PRINT "<<E8:FD error >>"
CASE 9
PRINT "<<E9:Hardware error >>"
END SELECT

LOCATE 23, 1
INPUT "End of FD analize.Press 'Enter' to fin.";f$
STOP
END IF
wrtcmdl ("FSH? 0")
rdl$ = LEFTS$(readcmdl$, IBCNT$ - 1)
wrtcmdl ("FSH? 1")
rd2$ = LEFTS$(readcmdl$, IBCNT% - 1)
'============= Qutput CRT =============s===
IF i = 0 THEN
LOCATE 4, 1
PRINT "Pattern directory data."

ELSE
LOCATE 11, 1
PRINT "Others directory data."
END IF
PRINT "Unused size:"+MID$(rdl$,5,7) 'print unused size
PRINT "Used size :"+MIDS$(rdl1$,13,7) 'print used size

PRINT "File count :";VAL(MID$(rdl$,21,22))'print file num

'print file no
PRINT "File name :";MID$(rdl$,24)+"," + MIDS$(rd2$,24)

NEXT i

]

PRINT .

INPUT "End of FD analize. Press 'Enter' to fin."; f$
END IF
STOP

10-45

SECTION 10 EXAMPLE OF PROGRAM CREATION

(6) FD operation (data save, resave, and recall)

This program saves and resaves data to a floppy disk and recalls data from a floppy disk

START

Initialize the GPIB interface.

gpinit% ()

e Setso thatsending is performed when the SRQ

StatusMask (, , ,)
expansion event register 2 setting is
completed.

o Setso that the expansion event status sending

conditions are sent when the floppy access is
completed.

Display the title.

Set PATT or OTHERS using the memory switching

function.

{

Set the specified PATT or OTHERS.

Y
Setthe dire

ctory mode.

Perform serial polling for the MP1763A. SRQPoll ()
Error Bit: ON
Terminated normally? o
Error Bit : OFF Display FD Error.
Read the expansion event status register 1 using StatusDisp(, , ,)
the request command (ESR1?).

NO

Is the FILE
ACCESS bit of expansion event status
register 11?2

YES (1)

10-46

3

SECTION 10 EXAMPLE OF PROGRAM CREATION

@

{

it.

® Read the first half of the file information using
the request command (FSH? 0) and save it.

® Read the other half of the file information
using the request command (FSH? 1) and save

A

" n

Enter “Save”, “resave”,

Iu

recall” or “delete”.

'

{

Y

{

Enter the file name to
be saved.

Enter the file name to
be resaved.

Enter the file name to
be recalled.

Enterthe file name to
be deleted.

]

Save

Resave

Recall

Delete

{

!

Y

¥

NO (in access)

L
>

Check the access status of the floppy
disk using the request command
(MAC?).

Access terminated?

YES (terminated)

command (ERR?).

To reset the file access bit of the expansion event
status register, read the status using the request

YES

Is error information
searched using (FDE?)?

Abnormal

Display the error
information on the
CRT.

*1

Note) If a system error occurs, the

error contents are displayed
and the program stops.

If an FD error occurs, a message
isissued.

10-47

SECTION 10 EXAMPLE OF PROGRAM CREATION

® Program list

DECLARE SUB ClearDisp (p%, 1%)
REM S$INCLUDE: 'c:¥at-gpib¥gbasic¥gbdecl.bas'

COMMON SHARED DEV$%, GPIBO%, PPG%, ED$%

DECLARE SUB waidly (tim!)

DECLARE SUB wrtcmdl (w$)

DECLARE SUB ErrPoll ()

DECLARE SUB StatusDisp (stb%, esr%, esr2%, esr3%)
DECLARE SUB StatusMask (s0%, sl%, s2%, s3%)
DECLARE FUNCTION itob$ (1%, V%)

DECLARE FUNCTION SRQPoll% ()

DECLARE FUNCTION gpinit$ ()

DECLARE FUNCTION readcmdl$ ()

IF gpinit% <> 0 THEN 'Setup interface

'====== Set MSS status byte register =======
CALL StatusMask(&HC, &HO, &H2, &H2)

DO
CLS
PRINT "** MP1761B/MP1763B FD OPERATION PROGRAM ** "

Ilzzz======== Select PTN/OTHERS ==============

DO
LOCATE 17, 1
INPUT"Memory mode select [PATTERN:0,OTHERS:1]";mem$
IF mem$ <> "0" AND mem$ <> "1" THEN
LOCATE 16, 1
PRINT "Wrong chosen number!! Please
select a correct number"
END IF
CALL ClearDisp(16, 2)
LOOP UNTIL mem$ = "O0" OR mem$ = "1"

wrtcmdl ("MEM " 4+ mem$)

lz========== Set FILE DIR mode ===========
wrtcmdl ("FIL 1")

'========= Polling FILE ACCESS bit =========

IF SRQPoll% <> 0 THEN
CALL StatusDisp(dmy$%, dmyl%, reg%, dmy3%)
ELSE
GOSUB Fderr
GOTO jump
END IF
LOOP UNTIL reg%$ AND &H2

'==== Save, Resave, Recall or Delete? =====
DO
LOCATE 17, 1
INPUT "Choose function
[SAVE:0,RESAVE:1,RECALL:2,DELEAT:3] ";0op%
IF op% < 0 OR op% > 3 THEN
LOCATE 16, 1
PRINT "Wrong chosen number!! Please
select correct function."
END IF
LOOP UNTIL op% >= 0 AND op% <= 3

10-48

SECTION 10

CALL ClearDisp(l6, 2)
LOCATE 17, 1
SELECT CASE op%

CASE 0
INPUT "Enter file number for
wrtemdl ("SAV " + NO$)
L

CASE 1
INPUT "Enter file number for
wrtemdl ("RSV " + NOS)
]

CASE 2
INPUT "Enter file number for
wrtemdl ("RCL " + NOS)
¥

CASE 3 v
INPUT "Enter file number for
wrtcmdl ("DEL " + NOS$)
]

END SELECT

GOSUB Faccess
GOSUB Fderr
CALL ClearDisp(1l7, 1)

'======= Reset EventStatusRegisterl ==

jump: CALL StatusDisp(dmy$%, dmyl%, dmy2%, dmy3%)

LOCATE 17, 1

EXAMPLE OF PROGRAM CREATION

SAVE:"; NO$

RESAVE:"; NOS

RECALL:"; NOS

DELEAT:"; NOS

INPUT "Do you more test another function? [Yes/No]"; loop$

LOOP UNTIL loop$ = "n" OR loop$ = "N"

dmy2%, dmy3%)

END IF
]
STOP
'
Faccess: '============ FD access end ? ====z=z=======
]
DO
CALL StatusDisp(dmy%, dmyl%,
waidly (1)
wrtcmdl ("MAC?")
RD$ = LEFTS$(readcmdl$, IBCNT% - 1)
LOOP UNTIL MID$(RD$, 1, 5) = "MAC 0"
'
RETURN

10-49

SECTION 10

RETURN

10-50

EXAMPLE OF PROGRAM CREATION

CALL wrtcmdl("FDE?")
RD$ = LEFTS$(readcmdl$,
LOCATE 10, 1

IF RD$ <> "FDE 10" THEN

IBCNTS - 1)

PRINT "FD error occuerd!! "
SELECT CASE MIDS$(RDS$, 6, 1)

CASE

CASE

CASE

CASE

CASE

CASE

CASE

CASE

CASE

CASE

END SELECT

ELSE

PRINT "<< *x%

PRINT "<< **
END IF

"0"

PRINT "EO:Media error "
"1"

PRINT "El:Write protection error "
"2"

PRINT "E2:File full "
Il3ll :

PRINT "E3:File not found "
Il4ll

PRINT "E4:File already exists error "
lISII

PRINT "E5:Write error "
"6"

PRINT "E6:Read error "
"7"

PRINT "E7:File type , File error "
Il8ll

PRINT "E8:FD error "
llgll

PRINT "E9:Hardware error "

FD operation complete!! ** >>n
Accept file number is " + NO$ + ", **x >>"

(7) Standard status byte (4 types) checking

SECTION 10 EXAMPLE OF PROGRAM CREATION

This program checks the standard status bytes (QYE, DDE, EXE, and CME bits).

START

Initialize the GPIB interface.

gpinit% ()

Display the title.

completed.

e Set so that the SRQ is sentwhen the standard StatusMask (, , ,)
event status register setting is completed.
e Setso that the standard event status is sent
when QYE, DDE, EXE, or CME bit setting is

Y

Enter any GPIB command.

Settheinput command.

MP1763A.

Conduct serial polling three times for the

Did the RSQ or ERR bit become 1?

NO Displays that the command s correct.

set.

Read the standard event status register using the | StatusDisp(, , ,)
request command (ESR?) and check what bit is

/

® , ®

10-51

SECTION10 EXAMPLE OF PROGRAM CREATION

) o
A
+CME *EXE y DDE ¢QYE *omer
Display Display Display Display Display “???" and
“COMMAND "EXECUTION “DEVICE ERROR”. "QUERY ERROR”. stop the program.
ERROR”". ERROR".

Y Y Y ¢

Display the GPIB command in error.

-
-

wocessi ng?

END

-

Loop

END Note) If a system error occurs, the
error contents are displayed
and the program stops.

10-52

SECTION 10 EXAMPLE OF PROGRAM CREATION

® Program list

REM S$INCLUDE: 'c:¥at-gpib¥gbasic¥gbdecl.bas'
COMMON SHARED DEV%, GPIB0%, PPGS%

DECLARE SUB waidly (tim!)

DECLARE SUB wrtcmdl (WRTS)

DECLARE SUB trap ()

DECLARE SUB ClearDisp (p%, 1%)

DECLARE SUB StatusDisp (stb%, esr%, esr2%, esr3%)
DECLARE SUB StatusMask (s0%, sl%, s2%, s3%)
DECLARE FUNCTION itob$ (1%, V%)

DECLARE FUNCTION gpinit% ()

DECLARE FUNCTION readcmdl$ ()

CLS
IF gpinit% <> 0 THEN 'Setup interface

PRINT "** MP1761B/MP1763B STANDARD STATUS REGISTER CHECK **"
PRINT

'z====== Set MSS status byte register =======
CALL StatusMask(&H3C, &H7E, &H77F, &H3)

DO
CALL ClearDisp(5, 15)
LOCATE 5, 1
INPUT "Please enter some GPIB command(s):"; com$
length% = LEN(com$)
CALL wrtcmdl(com$)
LOCATE 5, 1

PRINT "Please enter some GPIB command(s):
n

stag = 0

FOR 1 = 0 TO 2
CALL IBRSP(PPG%, SPR%)
IF IBSTA < 0 THEN CALL trap
sta% = sta% OR SPR%
sta$ = itob$(8, SPR%)
LOCATE 1, 60
PRINT "*SRE:"; sta$

waidly (.1)
NEXT i

10-53

SECTION10 EXAMPLE OF PROGRAM CREATION

END IF

STOP

10-54

IF (sta% AND &H20) THEN
LOCATE 7, 1
PRINT "Execution command(s) fail of ''
n
IF length% > 0 THEN
LOCATE 7, 1
PRINT "Execution command(s) fail of '";
LEFT$(com$, lengthg); "'"
END IF

CALL StatusDisp(dmy$%, reg$%, dmy2%, dmy3%)

CALL ClearDisp(8, 6): LOCATE 8, 1

IF (reg% AND &H2) OR (reg% AND &H40) THEN PRINT
w222 ": STOP

IF reg% AND &H4 THEN PRINT "* QUERY ERROR *"

IF reg% AND &H8 THEN PRINT "* DEVICE ERROR *"

IF reg% AND &H10 THEN PRINT "* EXECUTION ERROR *"
IF reg% AND &H20 THEN PRINT "* COMMAND ERROR *"

ELSE
LOCATE 7, 1
PRINT "Command succed execution. "
CALL ClearDisp(9, 6)
CALL ClearDisp(2, 3)
END IF

LOCATE 15, 36: PRINT " n
LOCATE 15, 1
INPUT "Do you test other command? [Yes/No] "; loop$

LOOP UNTIL loop$ = "n" OR loop$ = "N"

SECTION 10 EXAMPLE OF PROGRAM CREATION

(8) Pattern data DMA transfer processing
This program performs the DMA transfer for pattern data.

START

Initialize the GPIB interface. gpinit% ()

|

Display the title.

|

Create the pattern data to be transferred.

|

e Make the pattern logic positive. wrtemd1 (“LGC 0")
® Set the DATA pattern. wrtcmd1 (“PTS 1)
® Set the synchronous mode to NORMAL. wrtcmd1 (“SYM 0”)
o Set the PATT display. wrtcmd1 (“DSP 0”)
NO
Transfer?
YES

Perform the DMA transfer for internal wrtemd1 (“WRT” + STR$ (length%))
data. dmawrt (pat% (), length%)

END Note) If a system error occurs, the error contents are
displayed and the program stops.

10-55

SECTION 10 EXAMPLE OF PROGRAM CREATION

® Program list

REM $INCLUDE: 'c:¥at-gpib¥gbasic¥gbdecl.bas'
COMMON SHARED DEV%, gpib0%, PPG$%

DECLARE SUB StatusMask (s0%, sl%, s2%, s3%)
DECLARE SUB StatusDisp (stb%, esr%, esr2%, esr3%)
DECLARE SUB wrtcmdl (w$)

DECLARE SUB dmawrt (w%(), 1%)

DECLARE SUB gpiberr (msg$)

DECLARE FUNCTION gpinit$ ()

DECLARE FUNCTION Exchange% (i%)

DIM pat$(302)

IF gpinit% <> 0 THEN 'Setup interface
CLS
PRINT "** MP1761B/MP1763B DMA(pattern data) SAMPLE PROGRAM ** "
PRINT

CALL StatusMask(&HO, &HO, &HO, &HO)
1
'z=========== Table ============
' Test pattern set and swap data.
' if you use ibconfig() swap function,
' then don't call Exchange() function. Because, its same operation.
1
Dlength% = 300 ':Max Page
ij$ =0
FOR i% = 0 TO Dlength% - 1
pat%(i%) = Exchange(j%)
3% = jg + 1
NEXT 1%
pat$(i%) = &HA

lzzzz========= initial EE=S=EEE=SE=SS=SSS=ES=
CALL wrtcmdl("LGC 0") 'Pattern logic : positive
CALL wrtemdl("PTS 1") 'Pattern : data

CALL wrtcmdl("DLN " + STR$(Dlength% * 16)): DATA Length
CALL StatusDisp(dmy%, dmyl%, dmy2%, dmy3%)
INPUT "Do you wish transmit PATTERN data? [Yes/No]:"; a$
IF a$ = "y" OR a$ = "Y" THEN

CALL wrtcmdl("WRT " + STR$(Dlengthg * 2) + ",0")

' CALL ibconfig(gpib0%, 20, 1)
' CALL gpiberr("'ibconfig' execute status")

CALL dmawrt(pat%$(), Dlength$)
END IF
END IF

STOP

10-56.

APPENDIX A

APPENDIX A COMPATIBILITY WITH CONVENTIONAL INSTRUMENTS

When the mainframe uses programs generated by conventional instruments (MP1701B/MP1608A /

MP1650A), some additional editing is required for programming.

(1) Status common command structure

MP1763B supports some of the common commands that conform to 488.2, but these commands are

expressed without % in MP1701B.

Command MP1701B MP1763B
Service request STB? *STB?
Service request enable register SRQ *SRE
Standard event status register ESR? *ESR?
Standard event status enable register ESE *ESE
Expansion event status register EER? ESR2?
ESR37?
Expansion event status enable register EES ESE2?
ESE3?

See “ Section 8: STATUS STRUCTURE ” for other common commands and statuses.

(2) Other GPIB commands

Appendix table A-1 shows a the correspondence between GPIB and MP1701B commands.

Re-edit programming by referring to the GPIB instruction manuals for each instrument.

O : Commands common with MP1701B
X : Commands not common with MP1701B

APPENDIX A

Table A-1 Table of Device Messages

Control message Da;aer:g:?t mesg‘;‘gzeetails Compati-
Function : bility with
Hgg?ter Numsgrctdata Hgg?ter No.| Page MP17018
o INTERNAL CLOCK section
Internal clock frequency FRQ | NR1format | FRQ? 1 {P9-20 O
Internal clock resultion switching RES | NR1format | RES? 2 |P9-22 O
o MEMORY section
File No./directory mode switching FIL | NR1format | FIL? 3 |P9-24 O
FD data recall RCL | NR1 format - 4 |P9-25 O
FD data delete DEL | NR1 format - 5 |P9-26 X
FD data save SAV | NR1 format - 6 |P9-27 O
FD data resave RSV | NR1 format - 7 |P9-28 O
Memory mode switch MEM | NR1 format | MEM? | 8 |P9-29 @)
FD format FDF - - 9 |P9-30 X
File content search ‘ - - FSH? |10 |P9-31 O
Memory FD mode - - FMD? | 11 [{P9-33 X
FD access status - - MAC? |12 |P9-34 O
FD error message - - | FDE? |13 |P9-35 X
¢ PATTERN section
Pattern logic LGC | NR1format | LGC? | 14 |P9-37 O
Generation pattern selection PTS | NRI1 format PTS? | 15 |P9-38 O
ZERO SUBST / PRBS stage PTN | NR1format | PTN? |16 |P9-39 O
PRBS mark ratio MRK | NR1format | MRK? |17 |[P9-40 | O
Alternate pattern A /B display switch ALT | NR1format | ALT? |18 |P9-41 X
Error insertion EAD | NR1format | EAD? |19 |P9-42 X
Alternate A /B loop times LPT | NRI1 format LPT? |20 (P9-43 X
Data length DLN | NR1format | DLN? |21 |P9-44 X
ZERO SUBST length ZLN | NR1format | ZLN? |22 |P9-46 X
Page number PAG | NR1lformat | PAG? |23 [P9-47 X
Pattern synchronous trigger position ADR | NRI1 format | ADR?
Pattern bit BIT NRi format BIT? 24 |P9-49 O
HEX format

A-2

Table A-1 Table of Device Messages (contd.)

APPENDIX A

Control message

Data request

Device

Compati-

' message |message details bility
Function : with
Hgggter Numggﬁtdata ngﬁfr No.| Page |mpP17018
o PATTERN section (contd.)
Pattern data preset (all pages, all bits) ALL | NR1format - 25 |P9-51 O
Pattern data preset (1 page, all bits) PST | NR1 format - 26 |P9-52 O
Pattern sync tigger position PSP | NR1 format PSP? | 27 |P9-53 X
Page number / pattern sync trigger PPD | NR1format | PPD? |28 |P9-55 X
position display switch
e OUTPUT section
Data output termination voltage DTM | NR1format | DTM? | 29 |P9-57 O
Clock1 output termination voltage CTM | NR1lformat | CTM? | 30 |P9-58 O
Offset reference value OFS | NRlformat | OFS? |31 |P9-59 O
Data output amplitude DAP | NR2format | DAP? | 32 |P9-60 O
Data output amplitude NAP | NR2format | NAP? | 33 |P9-62 O
Data output offset DOS | NR2format | DOS? | 34 |P9-63 O
Data output offset NOS | NR2format | NOS? | 35 |P9-68 O
Clock1 output delay time CDL | NR2format | CDL? | 36 |P9-70 O
Clock1 output amplitude CAP | NR2format | CAP? |37 |P9-71 O
Clock1 output offset COS | NR2format | COS? | 38 |P9-72 O
Output ON/OFF OON | NR1format | OOS? |39 |P9-74 X
DATA / DATA display switch DDS | NR1format | DDS? |40 |P9-75 X
DATA /DATA / tracking TRK | NR1format | TRK? |41 |P9-76 O
1/1SPEED, 1/4 SPEED display switch SPD | NR1format | SPD? |42 |P9-77 O
® Front panel
Sync signal output selection SOP | NR1 format SOP? | 43 |P9-79 X
® Back panel
Error insertion channel ECH | NRlformat | ECH? |44 |P9-80 O
® Function switch
Mark ratio AND bit shift No. SFT | NR1 format SFT? | 45 |P9-81
External error insertion EEI NR1 format EEI? | 46 |P9-82
Alternate pattern A /B switch signal APS | NR1 format A‘PS? 47 |P9-83
selection

A-3

APPENDIX A

Table A-1 Table of Device Messages (contd.)

Control message

Data request

Device message

message details Compati-

Function : bility with

H:aa?ter Numgglftdata Hgggter No | Page MP17018

® Other

Initialize INI - - 48 |P9-84 O
Pattern data input byte number WRT | NR1 format - 49 |P9-85 O
Pattern data output byte number RED | NR1 format - 50 |P9-86 O
Internal synthesizer PLL - - PLL? |51 |P9-87 @)
Internal timer setting RTM | NR1format | RTM? |52 |P9-88 O
Power cut, recovery status - - PWI? |53 [P9-89 O
Delay status - - DLY? |54 |P9-90 O

A-4.

APPENDIX B

APPENDIXB PATTERN DMA TRANSFER

DMA, Direct Memory Access, transfers large amounts of data at high speed.

This mainframe has 2 types of DMA transfer commands. These are explained below.

(1) Pattern data DMA transfer command (WRT)

When the measurement pattern is ALTERNATE or DATA, this command transfers the contents of the
program pattern DMA transfer in advance.

This command is used to notify the following information to the mainframe using WRT.

1 : How many data bytes are transferred?
2 : Inwhichaddress in the mainframe internal RAM area, is the transferred pattern data
stored?

1) How many data bytes are transferred?

The mainframe construction is 16 bit pattern. Therefore, a display of 1 page (16 bits) of the BIT display
unit is normally transferred in 2 bytes.

The correspondence between pattern data and bit is as follows.

bit 15 bit8 bit7 bit 0

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 BIT LED
No.

When an odd byte is transferred, only the upper bits (bit 15 to bit 8) are specified.

B-1

APPENDIX B

2) Inwhich address in the mainframe internal RAM area, is the transferred pattern data stored?
The RAM address of the mainframe is:

When DATA: 1 to 524287
When ALTERNATE: 0to 262143

ALTERNATE has pattern A and pattern B so the internal RAM area is divided in half. (A or B pattern
is selected according to the switch status of the A /B display switching).

The following shows the relationship between the address and the actual numbers of pages.

Pattern input address Internal RAM area Number of display pages
0 - - 1
1 - - 2
2 - - 3
3 - — 4
4 - - 5
l |
I i
524286 - - 524287
524287 - - 524288

B-2

APPENDIX B

(2) Pattern data DMA transfer command (RED?)

When the measurement pattern is ALTERNATE or DATA, this command transfers the contents of the
program pattern DMA transfer in advance.

This command is used to notify the following information to the mainframe using WRT.

1 : How many data bytes are transferred?
2 : Inwhich address in the mainframe internal RAM area, is the transferred pattern data
stored?

1) How many data bytes are transferred?

The mainframe construction is 16 bit pattern. Therefore, a display of 1 page (16 bits) of the BIT display
unit is normally transferred in 2 bytes.

The correspondence between pattern data and bit is as follows.

bit 15 bit8 bit7 bit 0

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 BIT LED
No.

When an odd byte is transferred, only the upper bits (bit 15 to bit 8) are specified.

B-3

APPENDIX B

2) In which address in the mainframe internal RAM area, is the transferred pattern data stored?
‘The RAM address of the mainframe is:

When DATA: 0 to 524287
When ALTERNATE: 0to 262143

ALTERNATE has pattern A and pattern B, so the internal RAM area is divided in half. (A or B
pattern is selected according to the switch status of the A /B display switching).

The following shows the relationship between the address and the actual numbers of pages.

Patterninput address Internal RAM area Number of display pages
0 « « 1
1 « “« 2
2 - « 3
3 « « 4
4 « -« 5
i |
I i
524286 “« « 524287
524287 «— « 524288

B-4.

APPENDIXC TABLES OF INITIAL VALUES

APPENDIX C

Appendix tables C-1 to C-5 shows initial values of MP1763B at the time of factory shipment.

Table C-1 Table of INTERNAL CLOCK section Initial Values

Device message

Header details
Function Initial value
part h Item Page
No. 9
¢ INTERNAL CLOCK section
Internal clock frequency FRQ 12.5 GHz 1 P9-20
Internal clock resolution switch RES MHz unit 2 P9-22

C1

APPENDIX C

Table C-2 Table of MEMORY Section Initial values

Device message
. Header details
Function part Initial value o
No. Page
® MEMORY section

File No./ Directory mode switching FIL File No. 3 |P9-24
FD data recall RCL - 4 |P9-25
FD data delete DEL - 5 |P9-26
FD data save SAV - 6 |P9-27
FD data resave RSV - 7 |P9-28
Memory mode switch MEM PATT 8 P9-29
FD format FDF - 9 P9-30
File contents search - Nodata 10 [P9-31
Memory / FD mode - 1440 K 11 |P9-33
FD access status - Non access 12 |P9-34
FD error message - Noerror 13 [P9-35

APPENDIX C

Table C-3 Table of PATTERN Section Initial Values

Device message
Header details
Function Initial value
: part Item Page
No. g
® PATTERN section
Pattern logic LGC Positive 14 |P9-37
Generation pattern selection PTS PRBS 15 |{P9-38
ZERO SUBST /PRBS stage PTN PRBS : 2%—-1 16 {P9-39
Z.8. :27
PRBS mark ratio MRK 1/2 17 {P9-40
Alternate / pattern A / B display switch ALT A pattern 18 |P9-41
Error insertion EAD | Nonexternal error insertion 19 |P9-42
Alternate A/ B loop times LPT 1 time both A and B pattern 20 |P9-43
Data length DLN Alternate : 128 bits 21 |P9-44
Data : 2 bits
ZERO SUBST length ZLN 1 bit 22 |P9-46
Page No./ pattern sync trigger position PAG 1 page 23 |P9-47
ADR

Pattern bit BIT All bits 0 24 |P9-49
Pattern sync trigger position PSP 1 page 27 |P9-53
Page No./ pattern sync trigger position PPD Page No. display 28 |P9-55
display switch

APPENDIX C

Table C-4 Table of OUTPUT Section Initial Values

Header

Device Message

Function ot Initial value Iten‘ieta”s
No. | Page
¢ OUTPUT section

Data output termination voltage DTM GND 29 P9-57
Clock1 output termination voltage CTM GND 30 P9-58
Offset reference value OFS VOH 31 P9-59
Data output amplitude DAP 1.0 Vp-p 32 P9-60
Data output amplitude NAP 1.0 Vp-p 33 P9-62
Data output offset DOS 0.0V 34 P9-63
Data output offset NOS 0.0V 35 | P9-68
Clock1 output delay time CDL 0ps 36 P9-70
Clock1 output amplitude CAP 1.0 Vp-p 37 P9-71
Clock1 output offset COS INAY 38 P9-72
Output ON/OFF OON Output OFF 39 P9-74
DATA /DATA display switch DDS Data display 40 | P9-75
DATA / DATA / tracking TRK Tracking OFF 41 | P9-76
1/1SPEED, 1/4 SPEED display switch SPD 1/1 speed 42 P9-17

c-4

Table C-5 Table of Other Section Initial Values

APPENDIX C

Device message

Function Header Initial value detals
part Item Page
No.
® Front panel
Syne signal output selection SOP 1/64 CLOCK 43 |P9-79
® Back panel
Error insertion channel ECH CH.1 44 |P9-80
® Function switch
Mark ratio AND bit shift No. SFT 1bit shift 45 |P9-81
External error insertion EEI | External error insertion OFF 46 |P9-82
Alternate pattern A /B switch signal APS Switch signal internal 47 |P9-83
selection generation
® Other
Internal timer setting RTM 00:00:00: 1 January 1995 52 (P9-88

APPENDIX C

C-6.

(Blank)

APPENDIXD

APPENDIXD TABLE OF TRACKING ITEMS

In this Appendix, MP1763B tracking items are explained.
Tracking denotes a function to send the MP1764A setting conditions to MP1763B through GPIB.
See “Section 3 Bus Connections and address setting” for connections.

The trackings are differ according to the measurement patterns.

Table D-1 Table of Tracking Items

Measurement pattern Tracking Items

: LOGIC ,

: Generation pattern (Alternate)

: A/ B display switching

: Page setting

: Pattern bit (DMA transfer, Both A and B transferred)

Alternate pattern

T W N

: LOGIC

: Generation pattern (Data)
: Data length

: Page setting

. Pattern bit (DMA transfer)

Data pattern

T A W N =

: LOGIC
. Generation pattern

Zero subst pattern

: Zero subst step
: Zero subst length

QU B W N =

: Page setting

: LOGIC

: Generation pattern
: PRBS step

: PRBS mark ratio

: Page setting

PRBS pattern

QU W W DN =

D-1

APPENDIXD

D-2.

(Blank)

	Cover
	TABLE OF CONTENTS
	SECTION 1 GENERAL
	1.1 Development of the GPIB Standard
	1.2 MP1763B GPIB Functions
	1.2.1 Overviews of GPIB functions
	1.2.2 Examples of system makeup using GPIB

	SECTION 2 SPECIFICATIONS
	2.1 Interface Functions
	2.2 Device Message List
	2.2.1 IEEE 488.2 common commands and MP1763A supported commands
	2.2.2 Status messages
	2.2.3 MP1763B device messages

	SECTION 3 CONNECTING THE BUS AND SETTINGS ADDRESS
	3.1 Connecting Devices with GPIB Cables
	3.2 Procedure for Setting the Address and Checking it
	3.2.1 Address setting
	3.2.2 Connection with MP1764A during the tracking operation

	SECTION 4 INITIAL SETTINGS
	4.1 Bus Initialization by the IFC Statement
	4.2 Initialization for Message Exchange by DCL and SDC Bus Commands
	4.3 Device Initialization by the *RST Command
	4.4 Device Initialization by the INI Command
	4.5 Device Status at Power-on

	SECTION 5 LISTENER INPUT FORMAT
	5.1 Listener Input Program Message Syntax Notation
	5.1.1 Separators, terminators and spaces before headers
	5.1.2 General format for program command messages
	5.1.3 General format for query messages

	5.2 Functional Elements of Program Messages
	5.2.1 <TERMINATED PROGRAM MESSAGE>
	5.2.2 <PROGRAM MESSAGE TERMINATOR>
	5.2.3 <white space>
	5.2.4 <PROGRAM MESSAGE>
	5.2.5 <PROGRAM MESSAGE UNIT SEPARATOR>
	5.2.6 <PROGRAM MESSAGE UNIT>
	5.2.7 <COMMAND MESSAGE UNIT> and <QUERY MESSAGE UNIT>
	5.2.8 <COMMAND PROGRAM HEADER>
	5.2.9 <QUERY PROGRAM HEADER>
	5.2.10 <PROGRAM HEADER SEPARATOR>
	5.2.11 <PROGRAM DATA SEPARATOR>

	5.3 Program Data Format
	5.3.1 <DECIMAL NUMERIC PROGRAM DATA>
	5.3.2 <NON-DECIMAL NUMERIC PROGRAM DATA>

	SECTION 6 TALKER OUTPUT FORMAT
	6.1 Syntax Differences Between Formats of Listener Input and Talker Output
	6.2 Functional Elements of Response Message
	6.2.1 <TERMINATED RESPONSE MESSAGE>
	6.2.2 <RESPONSE MESSAGE TERMINATOR>
	6.2.3 <RESPONSE MESSAGE>
	6.2.4 <RESPONSE MESSAGE UNIT SEPARATOR>
	6.2.5 <RESPONSE MESSAGE UNIT>
	6.2.6 <RESPONSE HEADER SEPARATOR>
	6.2.7 <RESPONSE DATA SEPARATOR>
	6.2.8 <RESPONSE HEADER>
	6.2.9 <RESPONSE DATA>

	SECTION 7 COMMON COMMANDS
	7.1 Classification by Function of Common Commands Supported by the MP1763B
	7.2 The Classification of Commands Supported and the Reference

	SECTION 8 STATUS STRUCTURE
	8.1 IEEE 488.2 Standard Status Model
	8.2 Status Byte (STB) Register
	8.2.1 ESB and MAV summary messages
	8.2.2 Device-dependent summary messages
	8.2.3 Reading and clearing the STB register

	8.3 Enabling SRQ
	8.4 Standard Event Status Register
	8.4.1 Bit definition
	8.4.2 Query error details
	8.4.3 Reading, writing to and clearing the standard event status register
	8.4.4 Reading, writing to and clearing the standard event status enable register

	8.5 Extended Event Status Register
	8.5.1 Bit definition of END event status register
	8.5.2 Bit definition of ERROR event status register
	8.5.3 Reading, writing to and clearing the extended event status register
	8.5.4 Reading, writing to and clearing the extended event status enable register

	8.6 Queue Model
	8.7 Techniques for Synchronizing Devices with the Controller
	8.7.1 Enforcing the sequential execution
	8.7.2 Wait for a response from the output queue
	8.7.3 Wait for a service request

	SECTION 9 DETAILS OF DEVICE MESSAGES
	9.1 Table of Device Messages
	9.1.1 Table of Device Messages (in the Alphabetic order)
	9.1.2 Device Messages (Panel correspondence)
	9.1.3 Detailed Explanation of Device Messages

	SECTION 10 EXAMPLE OF PROGRAM CREATION
	10.1 Example of Program creation Using DECpc

	APPENDIX A COMPATIBILITY WITH CONVENTIONAL INSTRUMENTS
	APPENDIX B PATTERN DMA TRANSFER
	APPENDIX C TABLES OF INITIAL VALUES
	APPENDIX D TABLE OF TRACKING ITEMS

